
Petr Kuzmič
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Preface

DynaFit documentation is divided into several book-length documents. This par-
titioning was chosen in order to keep each part of the overall documentation reason-
ably short.

• Getting Started with DynaFit
The Getting Started with DynaFit manual describes the user interface, includ-
ing the menu system and the appropriate formatting of input experimental data.
Only a cursory attention is paid to the syntax and semantics of DynaFit script-
ing. One particular chapter is set aside for step-by-step tutorial solving a real-life
research problem involving simultaneous biophysical equilibria.

• DynaFit Scripting
This DynaFit Scripting manual contains everything the DynaFit user might need
to understand about the DynaFit scripting language under a great majority of ex-
perimental circumstances. This release of the scripting manual purposely does
not cover the use of certain highly specialized, built-in fitting models, which
will be handled in a separate supplemental document.

• DynaFit Theory and Internals
The Theory and Internals manual, currently in preparation, will explain the
scientific basis and technical aspects of various computational algorithms em-
ployed by DynaFit. The book will also provide a detailed explanation of the
various types of output produced by DynaFit, focusing in particular on the the-
ory of nonlinear regression analysis.

In addition to book-length volumes, the present book representing the second
of three installments, additional DynaFit documentation will consist of multiple
shorter manuscripts focusing on various theoretical and practical issues arising in
the analysis of bio/chemical equilibria and kinetics.

All parts of the DynaFit documentations are meant to be “living documents”, fre-
quently expanded and (presumably) improved by revisions based on user feedback
and on new information published in the research literature. For this reason DynaFit
users are encouraged to periodically visit the BioKin website http://www.biokin.com
for updates.

Acknowledgments. My most sincere thanks go to Dr. Jan Antosiewicz, Depart-
ment of Biophysics, Institute of Experimental Physics, Warsaw University, Poland,
for making many helpful suggestions that significantly improved the quality of this
manuscript.

Petr Kuzmič
Watertown, Massachusetts
May 2014, revised March 2018
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Chapter 1
Introduction

DynaFit is driven by plain text files called scripts. Each script contains the following
information:

• Task. We can either simulate artificial data, or we can fit existing experimental
data. The script will tell DynaFit what we need to accomplish.

• Data. In a particular section of the script, DynaFit is told where in the system
(i.e., in which file) to look for experimental data.

• Model. Here we tell DynaFit what model or mechanism we have in mind, which
presumably underlies the experimental (or simulated) data.

• Parameters. DynaFit needs to know the values of model parameters, such as
rate constants and starting concentrations of reactants.

• Output. When DynaFit runs, it creates a mini “web-site” composed of HTML
files, GIF image files, and plain text (ASCII) files. We must tell DynaFit where
to put these.

• Settings. DynaFit can be optionally fine-tuned for each particular problem, us-
ing a large number of control settings located in a special section of the script.

This chapter describes only a few general characteristics of the script files. In
later chapters, we will elaborate the necessary details.

1.1 Anatomy of a DynaFit script

The building blocks of every DynaFit are as follows:

Sections and keywords. The text enclosed in square brackets such as [task] or
[mechanism] are the sections of the DynaFit script. The special reserved words
such as progress or fit are DynaFit keywords.

1



2 1 Introduction

Special characters. Each DynaFit script contains certain special characters. For
example the “greater-than” character (optionally preceded by any number of dashes)
represents the left-to-right reaction arrow, -->.

Optional numerical data. The experimental data to be analyzed can be embed-
ded directly in the DynaFit script, or they can be located in separate external files.

Optional comments. A script file comment is text that is present for the benefit
of the researcher, but it is otherwise ignored by DynaFit. DynaFit scripts can contain
three kinds of comments: (a) any text preceding the first [task] section; (b) any text
set off by the semicolon through the end of the given line; and (c) any text in the
[data] section that does not represent valid numerical values.

Every DynaFit script is compiled out of the “anatomical parts” listed above. The
next section of this chapter provides a worked example.

1.2 Introductory example

DynaFit can be used to process four different types of experimental data, as shown
in the following table:

Data type Independent variable

Reaction progress Time
Equilibrium binding Total (analytic) concentrations
Initial rate enzyme kinetics Initial concentrations
Arbitrary data Arbitrary variable (algebraic model)

Regardless of the type of experimental data, the dependent variable is almost
always some type of physical signal being observed in the experiment, such as ab-
sorbance, fluorescence intensity, HPLC peak area, counts-per-second in radiometry,
chemical shift, etc.

To get acquainted with DynaFit scripting, this section presents a simple example
using reaction progress curves. The example is taken from ref. [2]. Recombinant
human 5α-ketosteroid reductase (enzyme concentration 50 pM) was incubated with
radioactive testosterone (substrate concentration 31 nM). Samples were withdrawn
at different reaction times and analyzed by HPLC. The percentage conversion of
substrate to product (dihydrotestosterone) was determined by HPLC with radiomet-
ric detection. The results are shown in Table 1.1.

It is assumed that the conversion of testosterone to dihydrotestosterone follows
the Michaelis-Menten reaction mechanism shown in Scheme 1.1. However, we have
recently shown that under the usual steady-state conditions, it is not possible to



1.2 Introductory example 3

time, min Product, %

2 6.4
4 12.4
6 19.5
8 25.5

10 30.7
12 38.0
14 42.6
16 47.4
18 54.4
20 57.4
22 63.4
24 65.7
26 70.6
28 73.7
30 75.9
34 80.9
38 86.0
42 89.2
46 92.4
50 93.9
54 94.9
60 96.5

Table 1.1: Conversion of testosterone (initial concentration 31 nM) to dihy-
drotestosterone over time, catalyzed by 5α-ketosteroid reductase (50 pM) [2].

extract all three rate constants appearing in Scheme 1.1. Instead, we must formulate
the theoretical model as the Van Slyke – Cullen mechanism shown in Scheme 1.2
[1].

E + S E.S
k1

k2

E + P
k3

Scheme 1.1

E + S E.S
k1

E + P
k3*

Scheme 1.2

Our task is to determine the rate constants k∗1 and k3 appearing in Scheme 1.2
from the experimental data listed in Table 1.1. Let us explain, step by step, how this
task is accomplished with DynaFit.
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Preparation of the input data file

We begin by creating a plain (ASCII) text file to hold the experimental data. Let
us assume that the data is originally stored in an Excel spread sheet file. The ac-
tual Excel data file for this demonstration, named substrate.xls, is located in the
distribution directory ./manual/intro/data.

DynaFit cannot read Excel files, only plain text (ASCII) files. Therefore, we must
first copy the numerical data from Excel to a suitable plain-text editor; or save the
spread sheet as plain text (Excel menu File ... Save As ... Save As Type ... Text
(Tab Delimited)). Either way, we want to end up with a plain text file as shown in
Figure 1.1.

Fig. 1.1: Experimental data: Copying from a spreadsheet program to a plain-text
editor.

The resulting ASCII (plain text) data file is named substrate.txt and is again
located in the directory ./manual/intro/data.

Preparation of the script file

DynaFit is distributed with 50+ representative example problems. It is very likely
that each new user will be able to modify at least one of the distributed example
scripts for a particular purpose. However, for the sake of this introductory demon-
stration let us assume that we set out to prepare a DynaFit script completely from
scratch.
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Each script must contain a section called [task], so we begin by typing (or
inserting) the following text:

[task]
data = progress
task = fit

Next we must tell DynaFit where to find our previously prepared experimental
data file. This is accomplished by using the section [data]:

[data]
directory ./manual/intro/data
file substrate.txt

Note that the leading period in the directory name means “current working direc-
tory”, that is, the particular directory where the DynaFit program itself is located.

Now let us assume that the HPLC peak areas recorded in our radiometric detector
are all systematically “off” by a certain baseline (or offset) value. In other words,
what if all substrate conversion values were shifted by one or two percent? This
is quite common in quantitative HPLC analysis. to account for this possibility, we
now insert the keyword offset and give it the value auto ?, which means two
things. First, the keyword auto instructs DynaFit to take as the initial estimate of
the baseline offset the first data point. Second, the question mark (?) tells DynaFit
to treat the baseline offset as one of the adjustable model parameters.

[data]
...
offset auto ?

We do have a certain idea about the underlying reaction mechanism for this en-
zyme reaction, as shown in Scheme 1.2. To express this theoretical model in DynaFit
notation, we will insert the [mechanism] section is shown immediately below.
The relationship between this text and Scheme 1.2 is obvious; the only thing that
changed is that we place the names of rate constants after the colon (:) separator,
instead above or below each reaction arrow:

[mechanism]
E + S ---> ES : k1*
ES ---> E + P : k3

To fit the available experimental data, DynaFit will perform nonlinear least-
squares regression, and therefore we need initial estimates of adjustable model pa-
rameters. This is frequently the most difficult aspect of using DynaFit, or, for that
matter, any other nonlinear regression software package. If we have absolute no idea
which starting values to assign to rate constants, we can always start with unit value
for all of them, and adjust the crude initial estimate interactively if necessary:

[constants] ; units: nM, min
k1* = 1 ?
k3 = 100 ?
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The text set off by the semicolon is a comment (ignored by DynaFit) which
reminds us that the concentration units through the script are nM for concentra-
tions and minutes for time. Thus, typing k1∗= 1 means k∗1 = 1 nM−1.min−1, or
k∗1 = 1/60×109 = 1.67×107 M−1s−1in more conventional units. The units of con-
centration and time are completely arbitrary. It is however required that they remain
consistent throughout the entire script.

Next we must specify the experimental conditions, in this case the initial concen-
trations of reactants:

[concentrations] ; units: nM
E = 0.05
S = 31

A very important part of the script is the section [responses], which creates a
necessary link between the measured experimental signal (absorbance, fluorescence
intensity, NMR chemical shift, chromatographic peak area, and the like) and the
changing concentrations of directly observable reactants.

In this particular example, one of the reactants is the enzyme E but we cannot
directly observe it in the experiment; nor can we observe the concentration of the
enzyme–substrate complex ES. Really the only reactant we are able to monitor in
our experimental setup is final reaction product P. Therefore, the response section
will contain only one species name:

[responses]
P = ...

The molar response coefficient is defined as follows. It is a number that relates
one concentration unit (whichever concentration unit was chosen in the given prob-
lem) to one unit of the observed experimental signal. In this particular example, we
have chosen nanomolar concentration units; the experimental signal is percentage
of substrate conversion to product. Therefore, the question is how many percentage
points of substrate conversion correspond to one nanomole per liter of the reaction
product? This is the value of the specific molar response coefficient of product P.

To arrive at the correct answer, consider that if 31 nM of substrate S were fully
converted to the product P, this would correspond to 100% conversion. Therefore,
1 nM of product formed corresponds to 100%/31 = 3.22%. Therefore, we complete
the [response] section as follows:

[responses] ; units: % product/nM substrate
P = 3.22 ?

Note that the response coefficient is considered as an optimized parameter in the
fitting model, as indicated by the question mark. We do this because the slope of
the calibration curve, to compute percentage substrate conversion from radiometric
data, is always subject to finite uncertainty (however small). In other words, what
if “100% conversion” by the calibration curve in reality was only 96% conversion?
Placing a question mark after the molar response coefficient will allow for this pos-
sibility.
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Finally, we must tell DynaFit where to store the generated output files, which is
done in the [output] section of the script file:

[output]
directory ./manual/intro/output/01

Listing 1.1 shows the complete script file to analyze the experimental data shown
in Table 1.1. The actual script is located in the distribution directory ./manual/intro.

EXAMPLE SCRIPT

Listing 1.1

Script ./manual/intro/01.txt

Fit substrate kinetic data to the Van Slyke-Cullen model.
Data: Moss, M., et al. (1996) Biochemistry 35, 3457-3464
Model: Kuzmic, P. (2009) Anal. Biochem. 394, 287-289
;_______________________________________________________
[task]

data = progress
task = fit

[mechanism]
E + S ---> ES : k1*
ES ---> E + P : k3

[constants] ; units: nM, min
k1* = 1 ?
k3 = 100 ?

[concentrations] ; units: nM
E = 0.05
S = 31

[responses] ; units: % product/nM substrate
P = 3.22 ?

[data]
directory ./manual/intro/data
file substrate.txt
offset auto ?

[output]
directory ./manual/intro/output/01

[end]

This completes the construction of a DynaFit script file that can be used to deter-
mine the microscopic rate constants k∗1 and k3 appearing in Scheme 1.2.

1.3 Sections

DynaFit script files are divided into sections, with section names being enclosed in
square brackets. A brief summary of the purpose of each section, arranged alpha-
betically, is shown in Table 1.2.
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Section Usage

[concentrations] Nonzero values of concentrations applicable to all data sets
[constants] Values of rate constants or equilibrium constants
[correlations] List of model parameters for which to plot correlation diagrams
[data] Location of experimental or simulated data
[end] End of script file
[mechanism] The reaction mechanism
[model] Arbitrary algebraic model
[output] Location of output files to be written to disk
[parameters] Arbitrary model parameters
[responses] Nonzero values of molar responses applicable to all data sets
[set:...] Experimental data proper
[settings] Optional control parameters
[task] The main task to be performed

Table 1.2: Section names recognized in DynaFit scripts

It is not necessary to memorize the section names. The menu Edit ... Insert ...
Section can be used to reveal all recognized section names and insert the desired
choice into the script. This is illustrated in Figure 1.2.

Fig. 1.2 Inserting section
names into the script file.
Select Edit ... Insert from
the main menu to insert an
appropriate section name into
the text currently displayed in
the editable window.

It is not necessary to remember section names and keywords, or even refer
to this manual, when constructing DynaFit scripts. The built-in text editor
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“knows” all valid keywords and sections and will insert these items into the
editable area after making an appropriate menu selection.

Most DynaFit script will contain the following sections:

[task]
task = ...
data = ...

...
[mechanism]
...
[constants]
...
[concentrations]
...
[responses]
...
[data]
...
[output]

directory ...
[end]

The above skeleton script template is available as file ./templates/mechanistic-
model.txt. This list of sections applies to DynaFit scripts that are used to automat-
ically derive the mathematical model based on the symbolic notation contained in
the [mechanism] section.

DynaFit can also be used to fit experimental data to an arbitrary algebraic model,
such as for example the Michaelis-Menten equation v =Vmax[S]/(KM +[S]), or any
other algebraic equation. In that case the DynaFit script will contain the following
sections:

[task]
task = ...
data = ...

...
[parameters]
...
[model]
...
[data]
...
[output]

directory ...
[end]
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The above skeleton script template is available as file ./templates/algebraic-
model.txt. Under certain circumstances a DynaFit script may also contain the fol-
lowing optional sections:

[correlations]
...
[settings]
...
[set:...]

Each of the sections enumerated above is addressed in a separate chapter of this
book.

1.4 Keywords

Each particular section of the script can contain various keywords recognized by the
miniature DynaFit scripting “language”. The complete list of keywords, arranged
alphabetically, in shown in Table 1.3.

algorithm extension plot
approximation file poisson
association fit power
auto from progress
column generic proportional
concentration graph quadratic
confidence incubate rapid-equilibrium
constant king-altman rates
data levenberg-marquardt response
delay linear search
design logarithmic set
differential-evolution mesh sheet
dilute model simulate
directory mole-fraction step
dissociation monte-carlo task
equilibrate none time
equilibria offset titration
equilibrium parameter to
error percent variable
exponential piecewise-linear

Table 1.3: Alphabetical list of keywords that can appear in DynaFit script files.

It is not necessary to memorize the approximately 60 keywords recognized by
DynaFit. The menu Edit ... Insert ... Keyword can be used to reveal all recog-
nized keywords and insert the desired choice into the script. Within the Edit menu
the keywords are organized by sections, in which they can legitimately appear.
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For example, the section [mechanism] can contain only one of three keywords:
dissociation, association, or equilibrium. This is illustrated in Fig-
ure 1.3.

Fig. 1.3: Inserting recognized keywords into the Input editable area.

The list of keywords shown in Table 1.3 may appear daunting to first-time users
of DynaFit. However, it is important to remember that each particular research
project will call for only a small subset of DynaFit keywords to be used in appro-
priate script files. It is also useful to remember that, especially in the initial phases
of each research project utilizing DynaFit, assistance can be obtained by contacting
the author and maintainer of DynaFit, Dr. Petr Kuzmič, through the BioKin.com
website.

The details of how to appropriately utilize each DynaFit keyword are explained
in subsequent chapters of this book.

1.5 Formatting

This section summarizes certain general principles that apply to the formatting of
all DynaFit scripts.
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Case sensitivity

DynaFit scripts are case-sensitive. For example the section name [task] is cor-
rectly recognized, whereas [Task] (using upper case “T”) would not be recog-
nized by the DynaFit scripting engine.

White space

For greater readability, DynaFit scripts can contain any number of consecutive blank
lines. For the same purpose, the beginning of each line can be set off from the start
of the line by any number of blank characters. Blank characters can also be used
to vertically line up certain items, such as rate constant names or molecular species
names.

For example, let us compare Listing 1.2 with the semantically equivalent Listing
1.3. Although matters of style can be highly personal, most people would probably
agree that the Listing 1.3 is much easier to understand.

Listing 1.2

[task]
data=progress
task=fit
[mechanism]
E + S <=> ES : k1 k-1
ES -> E + P : k2
[constants]
k1=1, k-1=10?, k2=1?
[concentrations]
S=31, E=0.05
[responses]
P=3.21?
[data]
file ./test/data.txt
offset auto?
[end]

Listing 1.3

[task]
data = progress
task = fit

[mechanism]
E + S <===> ES : k(on) k(off)
ES ----> E + P : k(cat)
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[constants]
k(on) = 1
k(off) = 10 ?
k(cat) = 1 ?

[concentrations]
S = 31
E = 0.05

[responses]
P = 3.21 ?

[data]
file ./test/data.txt
offset auto ?

[end]

A judicious use of white-space is highly recommended when compiling DynaFit
scripts. For example, for greater readability, you may place space characters around
the equal sign (= ) in numerical assignments, as well before each question mark (?)
representing an optimized model parameter.

Comments

DynaFit scripts can optionally contain two kinds of comments, which are pieces of
text that are ignored by the DynaFit scripting engine and serve only to benefit the
human reader.

Comments before the first [task] or after [end]

Either before the first [task] section or after the [end] marker, a DynaFit script
can optionally contain free-format text that is ignored by the scripting engine. These
comments can often be crucially important for remembering the purpose of a partic-
ular script and what was learned by running it. An typical example is given below:

This is an attempt to determine the molecular mechanism
of ‘‘slow, tight’’ inhibition of HIV protease(lot SX-0015)
by the compound JG-365, using experimental data collected
on March 10, 2013. RESULTS: See notes at end.

[task]
...
[end]
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It looks like this could be a two-step reversible binding,
with initial binding step under rapid equilibrium, but the
Akaike Information Criterion for the next best model
(irreversible!) is very close. CONCLUSIONS: We need more
data, using more optimally chosen inhibitor concentrations.

It is highly recommended to annotate each successive DynaFit script, gen-
erated in a data-analytic session where multiple script drafts or versions are
involved, by explanatory comments similar to the example above. In this fash-
ion, a collection of scripts can serve as an important part of an electronic lab-
oratory notebook.

Embedded comments

Within the script proper (that is, after the first [task] line and before the [end]
marker) we can embed shorter comments set off by the semicolon character (;). Any
text starting from the semicolon to the end of the given line will be ignored by the
DynaFit scripting engine. This is useful to introduce reminder about concentration
units, or mark up other salient feature of the script. An example is given below:

[concentrations] ; units: micromolar
Substrate = 10 ?
Enzyme = 0.01 ; fixed parameter !

[data]
; Stopped-flow machine in second floor lab (3/10/2013).
; The baseline seemed to have been drifting all day!

directory ./stopped-flow/SFX-100/130310
file d01.txt

This notation can be used conveniently to “delete” reaction steps from the mech-
anism we had previously contemplated. In this way we can maintain a record of
progressively developing the fitting model, starting from the initial draft and pro-
ceeding through multiple refinement steps:

Script ’fit-002’, a modification of ’fit-001’ but with the
isomerization step deleted:
...
[mechanism]

E + I <==> E.I : k(on) k(off)
; E.I <===> (E.I)* : k(forward) k(reverse) deleted !

[constants]
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k(on) = 1 ?, k(off) = 10 ?
; k(forward) = 1 ?, k(reverse) = 0.1 ? deleted !

Abbreviations

Certain DynaFit keywords can be abbreviated to keep the script file shorter and in
some cases more readable. Examples are shown in Table 1.4.

Keyword Abbreviation

association assoc
dissociation dissoc
equilibrium equil
concentration conc
response resp

Table 1.4: Abbreviations that can be used in DynaFit scripts.

A full explanation is offered in subsequent chapter of this book, addressing those
particular sections of the script where the particular keywords can legitimately ap-
pear.

Line breaks

The DynaFit scripting engine requires that certain pieces of text are placed on sepa-
rate lines. For example, all section names (such as [task] must all appear on their
own separate lines. However, occasionally there is a need to improve the readability
of the script by stringing together multiple “logical lines” in a single “physical line”.
This can be accomplished by inserting the vertical bar (|) character wherever a line
break must appear in the script.

For example, in the section [data], the keyword concentration must
appear on a separate line following each particular file name. The same applies to
the keyword offset. However, to make the script more readable we can introduce
these required “logical” line breaks by a notation similar to the following fragment,
in which the vertical bars represent required line breaks:

[data]
directory ./test/data
extension txt
file f01 | concentration S = 0.1 | offset auto ?
file f02 | concentration S = 0.2 | offset auto ?
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file f04 | concentration S = 0.4 | offset auto ?
file f08 | concentration S = 0.8 | offset auto ?
file f16 | concentration S = 1.6 | offset auto ?

Comma-separated lists

Comma-separated lists of assignments can appear in DynaFit scripts in one of three
situations described below.

Constants, concentrations, and molar responses

The individual rate or equilibrium constants appearing in the [constants] sec-
tion can be listed either on separate lines, or in a list of comma-separated assign-
ments. For example, the following two script fragments (Listing 1.4 and Listing 1.5)
are semantically equivalent:

Listing 1.4

; Each rate constant on a separate line:
[constants]

k1 = 1 ?
k2 = 2 ?
k3 = 3 ?
k4 = 4 ?

Listing 1.5

; All rate constants on a single line:
[constants]

k1 = 1 ?, k2 = 2 ?, k3 = 3 ?, k4 = 4 ?

The same degree of flexibility applies to the contents of the sections [concentrations] and
[responses].

Concentrations and molar responses in the [data] section

Let us assume that the data file f1.txt is associated with the enzyme concentration
0.01 µM, substrate concentration 10 µM, and inhibitor concentration 0.5 µM. In
contrast, the file f2.txt is associated with a different set of concentrations, which are
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two-fold higher for each component. This can be expressed in DynaFit scripts in
one of two semantically equivalent ways:

Listing 1.6

; local (file-based) concentrations listed separately:
[data]

file f1.txt
concentration E = 0.1
concentration S = 10
concentration I = 0.5

file f2.txt
concentration E = 0.2
concentration S = 20
concentration I = 1.0

Listing 1.7

; local (file-based) concentrations on the same line
[data]

file f1.txt | conc E = 0.1, S = 10, I = 0.5
file f2.txt | conc E = 0.2, S = 20, I = 1.0

The same degree of flexibility applies to defining local (file-based) molar re-
sponse coefficients of reactants, using the keyword response or, equivalently,
the abbreviation resp.

Special characters

The following characters have special meaning: < > [ ] : + * ! ? | ;.
Detailed explanation of how these special characters are used is given in appropriate
sections of this manual. A brief summary is given in Table 1.5.

Please note that the number of dashes or equal signs in the reaction arrow no-
tation is not important. For example, the notation -> has the same meaning as the
notation ---->. Similarly, <=> or <======> can be used equivalently to repre-
sent a reversible reaction.

References

1. Kuzmič, P.: Application of the Van Slyke–Cullen irreversible mechanism in the analysis of
enzymatic progress curves. Anal. Biochem. 394, 287–289 (2009)
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Symbol Meaning

+ separates reactants in a reaction step
: separating reaction steps from names of rate constants
* linking model parameters by using constant numerical factors
| line break
, lists of values, depending on context
? optimized (adjustable, fitting) parameter

?? request confidence interval for an optimized parameter
; comments (anything beyond semicolon (;) on any given line is ignored)

-> left-to-right reaction arrow
<- right-to-left reaction arrow

<==> double-sided reaction arrow (reversible step)
[ ] names of main sections in the script file
{} in the [settings] section of the script file and in the default settings

file: names of sections for default settings
{ , , } lists of values in the scan of initial estimates

.. optimization ranges

Table 1.5: Special characters and constructs.

2. Moss, M.L., Kuzmič, P., Stuart, J.D., Tian, G., Peranteau, A.G., Frye, S.V., Kadwell, S.H.,
Kost, T.A., Overton, L.K., Patel, I.R.: Inhibition of human steroid 5α reductases type I and II
by 6-aza-steroids: Structural determinants of one-step vs two-step mechanism. Biochemistry
35, 3457–3464 (1996)



Chapter 2
Tasks

The main task to be accomplished by DynaFit is defined in the [task] section
of the script file. The [task] section must always contain at least the keywords
task and data:

[task]
task = ...
data = ...

Optionally, the [task] section can also contain one or more of the following
keywords:

[task]
...

approximation = ...
algorithm = ...
confidence = ...
model = ...

This chapter explains in detail the various values that be legitimately assigned to
the above keywords. We also discuss the how the contents of the [task] section in
certain particular cases interact with the required contents of certain other sections
of the script, such as [data].

2.1 Available tasks

The task keyword can be assigned one of three possible values:

task = fit
task = simulate
task = design
task = plot

19
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This section describes the meaning of these alternate task choices, and the pos-
sible implications of any particular choice for other sections of the script.

2.1.1 Least-squares fit

[task]
task = fit

The above input code signifies that DynaFit will perform least-squares fit of ex-
perimental data specified in the [data] section (see Chapter 7). If the fit is to be
performed to a mechanistic model, the script must also contain at least the sections
[mechanism] and [constants]. If the fit is to be performed to an arbitrary
algebraic model, the script must also contain at least the sections [parameters]
and [model].

For a complete working example, see the script files 01.txt and 02.txt located in
the directory ./manual/task/task/fit distributed with the program.EXAMPLE SCRIPT

2.1.2 Simulations

[task]
task = simulate

The above input code signifies that DynaFit will perform a simulation. This re-
quires that the [data] section must contain the keyword mesh:

[data]
mesh ...

The mesh keyword defines the values of the independent variable (for example,
time), at which the value of the dependent variable (for example, fluorescence in-
tensity changing over time) is to be computed. See Section 7.10 on page 103 for
details, which explains how to set up the simulation using the keyword mesh.

For a complete working example, see the script file 01.txt located in the directory
./manual/task/task/simulate distributed with the program.EXAMPLE SCRIPT

2.1.3 Optimal experiment design

[task]
data = progress
task = design
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The above input code signifies that DynaFit will attempt to discover the most op-
timal starting concentrations of reagents for a planned experiment, where the com-
position of the reaction mixtures is followed over time (data = progress). In
the current version of DynaFit only progress curve experiments can be optimized in
this way.

The [data] section must contain a reference to at least one (but usually more
then one) data file associated with a concentration of a particular reagent to be op-
timized, given the presumed reaction mechanism and the presumed values of mi-
croscopic rate constants. The particular starting concentration to be optimized is
identified by a double question mark. The allowed concentration range is specified
by the notation ?? (LOW .. HIGH).

Example 2.1 Optimal experimental design

[data]
mesh from 0 to 1000 step 10
file F1 | concentration A = 1 ?? (0.001 .. 100)
file F2 | concentration A = 1 ?? (0.001 .. 100)
file F3 | concentration A = 1 ?? (0.001 .. 100)

In this example we wish to optimize the concentration of the reactant A in a series of three
experiments to be analyzed globally. The allowed concentration range is between 0.001 and
100 µM. The time-points are fixed, from zero to 1000 seconds, stepping by 10 seconds.

For relatively complex reaction mechanisms and/or large number of experimen-
tal data points, the optimization algorithm may require significantly long execution
time to complete, typically up to several hours.

For a complete working example, see the script file 01.txt located in the directory
./manual/task/task/design distributed with the program. EXAMPLE SCRIPT

2.1.4 Plotting of raw experimental data

[task]
task = plot

The above input code signifies that DynaFit will generate a simple plot of the
raw experimental data identified in the [data] section of the script. This feature
is very useful in performing exploratory data analysis (EDA), before deciding on a
suitable regression model.
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2.2 Types of experimental data

DynaFit can be used to handle several distinct types of experimental data:

1. Reaction progress. The independent variable is time. The dependent variable is
some observable some physical quantity such absorbance, fluorescence, HPLC
peak area, and so on.

2. Complex equilibria. The independent variable is the total concentration of
some particular reagent. There can be any number of total concentrations var-
ied at the same time. The dependent variable again is some observable physical
quantity.

3. Initial reaction rates. The independent variable is the total concentration of
some particular reagent. The dependent variable is the initial rate of change in
some observable physical quantity.

4. Arbitrary data. The dependent and independent variable can be any of any
kind. The mathematical model is specified by the usual algebraic notation.

5. Exponential data. This is a special case of algebraic model fitting, where the
model is represented as a sum of exponential terms. No initial estimates are
required for the exponential amplitudes and rate constants.

6. Piece-wise linear data. This is another special case of algebraic model fitting,
where the model is a “broken line” containing an arbitrary number of segments.
This is sometimes useful to getting a preliminary idea for rate changes over the
course of a particular reaction.

7. Linear data. DynaFit can be used to perform linear regression analysis.

For the first three types of experimental data listed above (progress, equilibria,
and rates) the fitting model is represented symbolically by entering the postulated
reaction mechanism. In general, the notation to identify a given data type is as fol-
lows:

[task]
data = ...

...

In the above code snippet, the data = ... line can have one of the following
values:

data = progress
data = equilibria
data = rates
data = generic
data = exponential
data = piecewise-linear
data = linear
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2.2.1 Reaction time course

As of version 4.08, released in March 2018, DynaFit recognizes two distinctly dif-
ferent types of reaction time-course data, depending on the type of experiment that
was used to generate the given data set:

• Continuous assays
• Discontinuous assays

2.2.1.1 Continuous experiments

A “continuous” assay is an experiment where all reaction components are mixed in
a single reaction mixture to start the reaction. Subsequently, some type of measuring
instrument, such as for example an UV/Vis spectrophotometer or a fluorimeter, is
utilized to record potentially very many consecutive readings of the experimental
signal originating from the same sample.

From the point of view of data analysis, the most important feature of such “con-
tinuous” experiments is that the individual readings of the experimental signal are
not statistically independent but rather they are strongly correlated. For this rea-
son, those statistical data-analytic procedures that strictly rely on the assumption of
statistical independence of individual data points cannot be used. This includes for
example the computation of formal standard errors or confidence intervals [9, 8].

[task]
data = progress

...

The above input code signifies that DynaFit will handle experimental or simu-
lated data where the independent variable is the reaction time in suitably chosen
units (seconds, minutes, hours, etc.). The dependent variable is the value of a par-
ticular physical quantity such as absorbance or fluorescence recorded at a particular
reaction time t, in a continuous experiment.

The script must always contain at least the sections [mechanism] and [constants].
Both of these two script sections must refer only to rate constants, but not to equi-
librium constants.

[mechanism]
...

[constants]
...

For a complete working example, see the script file 01.txt located in the directory
./manual/task/data/progress distributed with the program. EXAMPLE SCRIPT
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2.2.1.2 Discontinuous experiments

A “discontinuous” assay is an experiment where the reaction components are mixed
in a multiple distinct reaction mixtures, all of which have presumably the same ini-
tial composition, to start the reaction. Each sample (reaction mixture) is allowed to
undergo time-dependent changes for a distinct amount of time, before the chemi-
cal or biological process is stopped, usually by some type of a chemical quenching
mechanism. Subsequently the final composition of each distinct reacting mixture is
analyzed by some appropriate chemical or physical method.

From the point of view of data analysis, the most important feature of such “dis-
continuous” experiments is that the individual readings of the experimental signal
are statistically independent. For this reason, it is safe to utilize all those statistical
data-analytic procedures that strictly rely on the assumption of statistical indepen-
dence of individual data points.

In order to specify that the given experiment is discontinuous, the following no-
tation must be used:

[task]
data = progress discontinuous

...

Note that there is no equivalent “continuous” keyword. If the discontinuous
notation is not used, DynaFit will automatically assume that the time-course exper-
iment is continuous in nature.

2.2.2 Equilibrium data

[task]
data = equilibria

...

The above input code signifies that DynaFit will handle experimental or simu-
lated data where the independent variable is the total or analytic concentration of
one or more reactant. The dependent variable is the value of a particular physi-
cal quantity, such as (for example) absorbance, fluorescence, NMR chemical shift
recorded after the system came to full equilibrium.

The script must always contain at least the sections [mechanism] and [constants].
Both of these two script sections must refer only to equilibrium constants, but not
to rate constants. The script section [data] must contain the keyword variable
followed by variable reactant(s).

[mechanism]
...

[constants]
...
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[data]
variable ...

For a complete working example, see the script file 01.txt located in the directory
./manual/task/data/equilibria distributed with the program. EXAMPLE SCRIPT

2.2.3 Initial rates of enzyme reactions

[task]
data = rates
approximation = ...

...

The above input code signifies that DynaFit will handle experimental or simu-
lated data where the independent variable is the total or analytic concentration of
one or more reactant. The dependent variable is the observed initial rate of an en-
zyme reaction.

The script must always contain at least the sections [mechanism] and [constants].
These two script sections must refer to at least one rate constant and then also to a
mixture of rate and equilibrium constants. The script section [data] must contain
the keyword variable followed by variable reactant(s).

Importantly, the observed rate is expressed as the rate of change of a particular
physical quantity such as absorbance or fluorescence per a suitably chosen unit of
time. Examples include absorbance units per second, fluorescence units per minute,
HPLC peak area per hour, or radioactive count per minute. Thus, the observed initial
rates required by DynaFit is distinctly different from the absolute reaction rates,
which are always expressed as the rate of change in molar concentrations per unit
of time (e.g., micromoles per liter per minute, or moles per liter per second).

[mechanism]
...

[constants]
...

[data]
variable ...

Initial rate kinetics in DynaFit is treated in one of three distinct theoretical frame-
works, identified by the keyword approximation in the code fragment shown
above:

1. Rapid-equilibrium approximation.
2. Steady-state approximation under “classical” experimental conditions (see be-

low).
3. General treatment, invoking no simplifying approximation such as rapid-equilibrium

or steady-state.
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The DynaFit notation required to invoke these three separate theoretical frame-
works is as follows.

2.2.3.1 Rapid-equilibrium approximation

[task]
data = rates
approximation = rapid-equilibrium

...

The above input code signifies that DynaFit will handle experimental or simu-
lated data where the independent variable is the total or analytic concentration of
one or more reactant. The dependent variable is the observed initial rate of an en-
zyme reaction under the rapid-equilibrium approximation [20, pp. 18-505].

Importantly, in contrast to the theoretical treatment found in classical biochemi-
cal literature [20], DynaFit allows any number of reactants to engage in “tight bind-
ing” interactions. “Non-tight binding” in enzyme kinetics is defined as a particu-
lar set of experimental conditions where the total or analytic concentrations of the
enzyme is negligibly small compared to all dissociation equilibrium constants. In
contrast, “tight binding” is defined as the particular set of experimental conditions
where the total or analytic concentration of the enzyme is comparable in magni-
tude, or even higher than, certain dissociation equilibrium constants, in particular
inhibition constants.

The script must always contain at least the sections [mechanism] and [constants].
The [mechanism] section must contain at least one rate constant measuring the
rate of formation of the final reaction product form the reactive enzyme–substrate
complex. All reversible elementary reactions for the binding and dissociation of
substrate(s), inhibitor(s), and/or activator(s) must be expressed as dissociation equi-
librium constants.

For a complete working example, see the script file 01.txt located in the directory
./manual/task/data/rates/rapid-equilibrium distributed with the program.EXAMPLE SCRIPT

If should be noted that every enzymatic reaction mechanism cast in the context of
initial rates under the rapid-equilibrium approximation can be cast equivalently as
a simple equilibrium binding problem (data = equilibria). In this case the
“kcat” values are folded into the molar response coefficient of the reactive enzyme–
substrate complexes. This is shown in the script file 02.txt also located in the di-
rectory ./manual/task/data/rates/rapid-equilibrium distributed with the program.
Both scripts (01.txt and 02.txt) produce exactly identical results but the second
script is probably easier to understand by most DynaFit users.EXAMPLE SCRIPT

2.2.3.2 Classical steady-state approximation (King-Altman)

[task]
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data = rates
approximation = king-altman

...

The above input code signifies that DynaFit will handle experimental or simu-
lated data where the independent variable is the total or analytic concentration of
one or more reactant. The dependent variable is the observed initial rate of an en-
zyme reaction under the “classical” steady-state approximation [20, pp. 506-847].

By “classical” approximation it is meant that the concentration of the enzyme
is assumed to be negligibly small when compared to the concentrations of all sub-
strates, inhibitors, activators, and other ligands. The initial rate equation is derived
by using the King-Altman method. The derivation is fully automatic according to
an algorithm devised by Cornish-Bowden [3].

The script must always contain at least the sections [mechanism] and [constants].
The [mechanism] section must contain only microscopic rate constant but not
equilibrium constants. Furthermore, the [mechanism] section must contain the
keyword reaction followed by the overall (un-catalyzed) reaction in the usual
bio/chemical notation. If any inhibitors or activators appear in the mechanism, the
[mechanism] section must also contain the keyword modifiers followed by a
comma-separated list of reactants.

[mechanism]
reaction ...
modifiers ...
...

[constants]
...

For a complete working example, see the script file 01.txt located in the directory
./manual/task/data/rates/king-altman distributed with the program. EXAMPLE SCRIPT

2.2.3.3 No approximation

[task]
data = rates
approximation = none

...

The above input code signifies that DynaFit will handle experimental or simu-
lated data where the independent variable is the total or analytic concentration of one
or more reactant. The dependent variable is the observed “initial” rate of an enzyme
reaction. More precisely, it is the reaction rate that would be observed at a specific
time after mixing all reaction components (enzyme, substrate(s), inhibitor(s)). The
specific value of this “delay” time is specified in the [data] section of the script,
as follows:
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[data]
delay = ...

For a complete working example, see the script file 01.txt located in the directory
./manual/task/data/rates/no-approximation distributed with the program.EXAMPLE SCRIPT

2.2.4 Generic data

[task]
data = generic

...

DynaFit has the ability to handle arbitrary algebraic equations. The above input
code signifies that DynaFit will handle experimental or simulated data where the
independent variable is specified on the variable line in the [data] section.
The dependent variable is represented by the symbol appearing on the left-hand
side of the last algebraic equation in the [model] section.

[parameters]
...

[model]
...

The script must always contain at least the sections [parameters] and
[model]. The [parameters] section must list all the adjustable (or fixed)
model parameters. In the [model] section we must assign initial (or fixed) numer-
ical values to all model parameters listed in the [parameters] section. Addition-
ally, the [model] can also contain intermediate algebraic expressions. A symbol
for the independent variable must appear as one of the model parameters.

For example, consider the Morrison equation [22] for tight-binding enzyme in-
hibition. In Eqn (2.1), v is the reaction rate observed at enzyme concentration [E]0
and inhibitor concentration [I]0; V0 is the corresponding reaction rate observed in
the absence of the inhibitor; and K∗i is the apparent inhibition constant.

v =V0
[E]0− [I]0−K∗i +

√(
[E]0− [I]0−K∗i

)2
+4 [E]0 K∗i

2[E]0
(2.1)

To define a requisite fitting model in DynaFit where the inhibition concentration
is varied in the experiment, we can use the following notation:

[task]
data = generic

...
[parameters]

Io, Eo, Vo, Ki
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[model]
Eo = 20
Ki = 4 ?
Vo = 20 ?
t = Eo - Io - Ki
v = Vo * (t + sqrt (t*t + 4*Eo*Ki))/(2 * Eo)

[data]
variable Io

...

In the above notation, the independent variable is the inhibitor concentration [I]0,
represented by the symbol Io. Note that Io does appear in the [parameters]
section, along with the bona-fide model parameters [E]0, V0, and Ki represented
as Eo, Vo, and Ki, respectively. The symbol t stands for a temporary variable,
t = [E]0− [I]0−K∗i , that is used merely to simplify the overall algebraic expression.

The use of question marks next to V0 and Ki signifies that these two parameter are
treated as adjustable in the fitting model. In contrast, the absence of a question mark
next to [E]0 signifies that the enzyme concentration is treated as a fixed parameter
in the fitting model.

For a complete working example, see the script file 01.txt located in the directory
./manual/task/data/generic distributed with the program. EXAMPLE SCRIPT

2.2.5 Multi-exponential data

[task]
task = fit
data = exponential

...

The above notation signifies that DynaFit will treat the experimental data to be
fit as a sum of exponential terms. The simulation mode is not available for this data
type, only data-fitting mode. In Eqn (2.2), x is the independent variable; y is the
dependent variable; a0 is the offset (baseline) on the signal axis; ai (i = 1,2, . . . ,n)
are exponential amplitudes; and bi (i= 1,2, . . . ,n) are the corresponding exponential
rate parameters.

y = a0 +
n

∑
i=1

ai exp(bi x) (2.2)

The number of exponential terms, n, can be determined automatically by us-
ing the Legendre polynomial method of Martin & Maconochie [13, 14]. Auto-
matic selection of the most appropriate exponential degree is arranged for by default
(see Automatic = y in the initialization code below), up to a certain maximum
number of terms to be considered. By default, the maximum degree is n = 4 (see
Degree = 4 in the initialization code listed below).
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[settings]
{ExponentialFit}

Degree = 4
Automatic = y

If we wished to force-fit the data to a certain particular number of exponentials,
for example three, we could override the default settings listed above as follows:

[settings]
{ExponentialFit}

Degree = 3
Automatic = n

For a complete working example, see the script file 01.txt located in the directory
./manual/task/data/exponential distributed with the program.EXAMPLE SCRIPT

2.2.6 Piecewise linear data

[task]
task = fit
data = piecewise-linear

...

The above notation signifies that DynaFit will treat the experimental data to be fit
as a disjointed sequence of multiple straight-line segments. The simulation mode is
not available for this data type, only data-fitting mode. The only mandatory section
of the script file is the [data] section. The default settings are shown below:

[settings]
{PieceWiseLinearFit}

Points = 0
Segments = 4
Time = 0

The meaning of these control settings is as follows:

• If the Points parameter above is set to any value other than zero, the program
will take the corresponding number of consecutive data points one at a time and
will fit each separate segment to a straight line.

• If the Segments parameter above is set to any value other than zero, the pro-
gram will divide the complete kinetic trace into the corresponding number of
equal-size segments, measured by the number of data points in each segment
(not by the segment duration).

• If the Time parameter above is set to any value other than zero, the program
will divide the complete kinetic trace into equal-length segments in terms of the
duration of each segment.
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For a complete working example, see the script file 01.txt located in the directory
./manual/task/data/piecewise-linear distributed with the program. EXAMPLE SCRIPT

2.2.7 Linear data

This option is available for processing of experimental data that can legitimately be
expected to follow a strictly linear trend. The script file notation is as follows:

[task]
task = fit
data = linear

...

It should be noted that there are very few circumstances arising in chemistry, biol-
ogy, biochemistry or biophysics (i.e., disciplines where DynaFit is most frequently
used) where the the dependence of an observed quantity on model parameters is
strictly linear. The linear fit option is provided in DynaFit mostly for compatibil-
ity of with other software packages, such as MS Excel, that are frequently used to
perform linear regression analyses in the laboratory.

2.3 Confidence intervals

DynaFit uses two different algorithms to estimate confidence intervals for adjustable
model parameters. The first (default) algorithm uses the profile-t method of Bates
& Watts [1, 2]. A pseudo-code for this algorithm is shown in ref. [1, p. 303]. The
second algorithm is based on the Monte-Carlo method as described by [21].

2.3.1 Systematic search: Profile-t method

[task]
...
confidence = search

The above input code signifies that DynaFit will perform a systematic search for
the limits of the confidence interval by using the profile-t method of Bates & Watts
Bates & Watts [1]. The particular model parameters that are to be searched must be
identified by the “double question mark” notation, as is shown in the code fragment
below.

[constants]
k1 = 123 ?? ; determine full confidence interval
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k2 = 456 ? ; determine best-fit value only
k3 = 789 ; treat as a fixed parameter

...

In this example, the rate constant k1 is assigned the initial estimate of k1 = 1234.
The double question mark signifies that we wish to obtain not only the best-fit val-
ues, but also additionally the confidence interval at a given probability level. The
single question mark after k2 = 456 signifies that we wish to obtain the best-fit
value using “456” as the initial estimate, but we do not wish to compute the con-
fidence interval. Finally the rate constant k3 = 789 is treated as a fixed parameter
in the fitting model, because the numerical value “789” is not followed by either a
single or a double question mark.

By default, DynaFit assumes that the desired confidence level is 95%. This de-
fault value can be changed by inserting an initialization code into the optional
[settings] section, as shown below:

[settings]
{ConfidenceIntervals}

LevelPercent = 99

In this example, the desired confidence level was changed from the default 95%
to 99%. This will make all confidence intervals somewhat wider.

For a complete working example, see the script file 01.txt located in the directory
./manual/task/confidence/search distributed with the program.EXAMPLE SCRIPT

2.3.2 The Monte-Carlo method

[task]
...
confidence = monte-carlo

The above input code signifies that DynaFit will perform a systematic search for
the limits of the confidence interval by using the Monte-Carlo method [21]. In this
case there is no need to use the double question mark notation as described in section
2.3.1. The confidence interval will be produced for all adjustable model parameters.

In many cases we might wish to restrict the number of Monte-Carlo correlation
plots produced by DynaFit. By default, correlation plots are produced for all possi-
ble pairs of model parameters, including “nuisance parameters” such as offsets on
the signal axis. To reduce the number of correlation plots, we can list in the sec-
tion [correlations] only the model parameters of particular interest. DynaFit
will then produce correlation plots for all possible pairs of parameters listed in that
section.

[correlations]
k1, k2, k3, k4
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The example code immediately above lists for four parameters of interest. There-
fore, DynaFit will produce (4× 3)/2 = 6 pairs of correlation plots (k1/k2, k1/k3,
k1/k4, k2/k3, k2/k4, and k3/k4).

For a complete working example, see the script file 01.txt located in the directory
./manual/task/confidence/monte-carlo distributed with the program. EXAMPLE SCRIPT

2.4 Data-fitting algorithms

DynaFit can perform the least-squares fit of experimental data to a given model by
utilizing one of three distinct algorithms:

1. The Hybrid Trust-Region algorithm of Dennis et al. [4, 5, 6].
2. The Levenberg-Marquardt algorithm [12] as implemented by Reich [18]
3. The Differential Evolution algorithm as implemented by Price et al. [17]

Each of these algorithms has its advantages and disadvantages.

2.4.1 The Trust region algorithm

[task]
...
algorithm = trust-region

Abbreviated version:

[task]
...
algorithm = TR

The above input code signifies that DynaFit will perform the least-squares fit of
experimental data using the hybrid “trust-region” algorithm NL2SOL devised by
Dennis et al. [4, 5, 6]. This is the default algorithm built into DynaFit, in the sense
that if the algorithm = ... line is absent in the [task] section, DynaFit will
use it. The advantage of the trust-region algorithm is that it is relatively fast. Another
major advantage is that the algorithm can successfully handle parameter constraints.

A disadvantage is in unfavorable cases the initial estimates of the model pa-
rameters must be reasonably close to the true values. In extreme cases, the initial
estimates of rate constants or equilibrium constants must be within one order of
magnitude, relative to the true “best-fit” values, otherwise the algorithm converges
into a false minimum. Unfortunately at the outset of the of the investigation we
rarely have the ability to estimate the model parameters with such high precision.
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2.4.2 The Levenberg-Marquardt algorithm

[task]
...
algorithm = levenberg-marquardt

Abbreviated version:

[task]
...
algorithm = LM

The above input code signifies that DynaFit will perform the least-squares fit of
experimental data using the classic Levenberg-Marquardt algorithm as implemented
by Reich [18]. The advantage of the Levenberg-Marquardt algorithm is that, as the
trust-region algorithm mentioned above, it is relatively fast.

There are also two important disadvantages. The first major disadvantage is that
in unfavorable cases the initial estimates of the model parameters must be very
close to the true values. The second major disadvantage of the Levenberg-Marquardt
algorithm is that it does not deal very well with realistic bounds imposed on model
parameters. For example, based on fundamental principles of chemistry and physics,
all rate constants, equilibrium constants, or reactant concentrations can only attain
positive values. However, in unfavorable cases the Levenberg-Marquardt algorithm
has a tendency to produce negative values, which are physically meaningless. To
prevent this, DynaFit implements a simple “restart” algorithm originally described
by Duggleby [7]. However, the “restart” algorithm often produces extremely slow
convergence.

Starting with version 4.08 of DynaFit, the Levenberg-Marquardt algorithm is
included in DynaFit mostly for compatibility with older versions of the software
package.

In exceptionally difficult and “ill-posed” regression problems, the more ad-
vanced hybrid trust-region algorithm NL2SOL and the classic Levenberg-
Marquardt algorithm may produce different results. In those situations Dy-
naFit users are advised to check all diagnostic messages, in particular those
generated by the L-M algorithm, for any indication that the algorithm may
have failed to reach convergence.

2.4.3 The Differential Evolution algorithm

[task]
...
algorithm = differential-evolution
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Abbreviated version:

[task]
...
algorithm = DE

The above input code signifies that DynaFit will perform the least-squares fit of
experimental data using the Differential Evolution (DE) algorithm as implemented
by Price et al. [17]. The major advantage of the DE algorithm is that it frequently
(although not always) converges to the global minimum on the least-squares hyper-
surface, as opposed to a local (false) minimum. There are also several important
disadvantages.

The first major disadvantage is that the DE algorithm can be excruciatingly slow.
Even for moderately complex models formulated in terms of differential equations,
typical running times can easily reach multiple hours. There have been practically
important data-analysis problems [19] where the running time reached up to 20
hours per data set on a multi-core computer with 2.4 GHz clock.

The second major disadvantage of the DE algorithm is that its global conver-
gence behavior is not mathematically guaranteed. Consequently if we obtain a rela-
tively poor fit of the experimental data to any given mechanistic model, we still do
not know with perfect certainty whether a better combination of model parameters
might exist (the “false minimum” problem).

Finally, the DE algorithm is not very well documented in the literature and there-
fore its use within DynaFit should be considered merely experimental at this point.

2.5 Multiple tasks and model discrimination

DynaFit has the ability to perform model discrimination analysis using three differ-
ent statistical criteria:

1. The Bayesian Information Criterion (BIC) [15, 16]
2. The Akaike Information Criterion (AIC) [15, 16]
3. The F-Test for nested models [10, 11]

To arrange for model discrimination analysis using these three statistical criteria,
the DynaFit script must contain multiple [task] sections. Each [task] section
must contain the keyword model = , followed by an arbitrary model label, fol-
lowed by the question mark.

For example, let us consider a scenario from enzyme kinetics, where the goal is
to discriminate between the “competitive”, “noncompetitive”, or “mixed” inhibition
models. In this case, the DynaFit script would contain the following notation:

[task]
...
model = competitive ?
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...

...
[task]

...
model = noncompetitive ?

...

...
[task]

...
model = mixed ?

...

...

Only the first task block will contain the [output] section, the [data] sec-
tion, and (optionally) any [settings]. The different task blocks typically contain
a unique notation only for [mechanism] and [constants].

In general, all subsequent task blocks will always re-use any sections that would
normally appear in the given block, but are missing, from the most immediately pre-
ceding task blocks. This applies even to DynaFit scripts that do not involve model
discrimination. In the example below, let us assume that the competitive, noncom-
petitive, and uncompetitive reaction mechanisms involve only one equilibrium con-
stant, Ki. In contrast, let’s assume that the mixed reaction mechanism is defined by
two separate equilibrium constants, Ki1 and Ki2. Please note how this “sharing” of
Ki within the first three mechanistic models is arranged in the code snippet immedi-
ately below.

[task]
...
model = competitive ?

...
[constants]

Ki = 1.23 ? ; ... does not have to be repeated below
...
[task]

...
model = noncompetitive ?

...
[task]

...
model = uncompetitive ?

...
[task]

...
model = mixed ?

...
[constants]

Ki1 = 1.23 ?
Ki2= 4.56 ?

...
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Because the first three mechanisms (competitive, noncompetitive, and uncompet-
itive) all contain only one equilibrium constant, the initial estimate given in the first
(competitive) mechanism will be shared by the following two mechanisms (non-
competitive and uncompetitive). The [constants] section does not have to be
repeated in the second and third task block. Only after DynaFit encounters the last
task block, referring to the mixed reaction mechanism, it is necessary to insert a
[constants] section with two separate equilibrium constants.

The same section-sharing principle applies to all other sections of any particular
DynaFit script.
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Chapter 3
Molecular mechanism

The reaction mechanism for the given chemical or biochemical system is specified
in the [mechanism] section of the script file. Some examples of valid reaction
mechanisms translated into DynaFit notation follow.

Example 1a: Competitive inhibition of an enzyme

[mechanism]
E + S <===> ES : kaS kdS
ES ---> E + P : kr
E + I <===> EI : kaI kdI

Example 1b: The same mechanisms under rapid-equilibrium approximation

[mechanism]
E + S <===> ES : KdS dissoc
ES ---> E + P : kr
E + I <===> EI : KdI dissoc

Example 2: Two-site binding of a protein trimer to DNA

[mechanism]
P + P + P <=> T : kaP3 kdP3
T + DNA <==> T.DNA : kaTD kdTD
T + T + DNA <==> T2.DNA : kaT2D kdT2D

Example 3: An oscillatory metabolic cascade

[mechanism]
S1 + E <===> S1.E : k1 k2
S1.E ---> E + S2 : k3

S2 + E <===> S2.E : k4 k5
---> S1 : v6

S2 ---> : v

39
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3.1 Chemical notation

Writing reaction mechanisms in the script file closely follows the usual chemical
notation. The only difference is that rate constants are not placed above and below
the arrows, but instead are written on the same line as the reaction step to which
they belong. For example, the Michaelis-Menten mechanism

E+S
k1


k−1

ES

ES
k2
→ E+P

can be written with each mechanism step on a single line as

k→ k←

E+S 
 ES k1 k−1

ES → E+P k2

which is represented in DynaFit by the following text:

[mechanism]
E + S <==> ES : k1 k-1

ES --> E + P : k2

3.1.1 Notational flexibility

DynaFit allows a significant degree of notational flexibility. The Michaelis-Menten
reaction mechanism can be written equivalently as

[mechanism]
E + S ----> E.S : kaA
E.S ----> E + S : kdA
E.S ----> E + P : kdP

or even in a condensed form as

[mechanism] | E + S <=> ES : k1 k2 | ES -> E + P : k3

where the vertical bar represents a line break.
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3.1.2 Formal rules

The plus sign in writing reactions must be surrounded by one or more blank spaces
(E + S, not E+S).

Each elementary step in the reaction mechanism must written on a separate line,
unless a particular step denotes a reversible reaction (thus, in fact, it represents two
different elementary reactions). In the reversible case, the forward and reverse steps
can be written either on separate lines using two single-sided arrows, or on the same
line using one double-sided arrow. Thus,

E + I <===> EI : k1 k2

is equivalent to

E + I ---> EI : k1
EI ---> E + I : k2

Single-sided arrows can point to either directions. Thus,

E + I ---> EI : k1

is equivalent to

EI <--- E + I : k1

Each elementary step is followed by a colon (:) followed by the name of one or
two associated rate constants. An irreversible reaction step must be followed always
by a single rate constant. If the step is reversible, the colon separator is followed by
two rate constants. The first rate constant always refers to the left-to-right (forward)
step, and the second rate constant refers to the right-to-left (reverse) step.

Oligomerization equilibria deserve a special mention here. In a DynaFit script
file we are not allowed to use numerical stoichiometric coefficients, so that a dimer-
ization equilibrium must be written as

A + A <===> A2 : k1 k2

while the alternate notation using stoichiometric coefficients

2 A <===> A2 : k1 k2 ; NOT ALLOWED

is not allowed.

3.1.3 Equilibrium constants

3.1.3.1 Equilibrium constants proper

In the analysis of equilibrium binding data we encounter a special case, where the
double sided arrow is followed by a single equilibrium constant, followed by the
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keyword equil. For example, while in the above example k1 was a label repre-
senting an association rate constant for the forward reaction step, here Ka is a name
of the equilibrium constant for the reaction:

E + I <===> EI : Ka equil

It is important to remember that the equilibrium constant always refers to the
reaction proceeding from left to right. In other words, in the above example Ka
is the association equilibrium constant, with the dimension M−1 (liter per mole).
If we insisted that an equilibrium be defined as a dissociation constant, with the
dimension M (moles per liter), then the reaction step above would have to be written
as a dissociation (reading from left to right):

EI <===> E + I : Kd equil

3.1.3.2 Dissociation constants

It is possible to override the left-to-right convention and designate certain equilib-
rium constants specifically as dissociation constants. In this case the name of the
equilibrium constant is followed by the keyword dissociation, which can be
abbreviated as dissoc. In the following examples, both Ki and Ksi are dissoci-
ation equilibrium constants although the left-to-right convention shows the reaction
steps ass association equilibria.

E + I <===> EI : Ki dissoc
ES + I <===> ESI : Ksi dissoc

3.1.3.3 Association constants

In certain applications (e.g., analytical chemistry) it is common to describe chemical
equilibria in terms of association constants, rather then dissociation constants. In this
case we can override the conventional left-to-right notation by using the keyword
association, which can be abbreviated as assoc. In the following examples,
the dimension of the equilibrium constants K1 and K2 is M−1 and M−2 respectively,
because they are treated as association constants.

AB <==> A + B : K1 assoc
ABC <==> A + B + C : K2 assoc

All total association constant can also be specified in this manner. For example,
the total association constant of the complex ABCD below is written as

ABCD <==> A + B + C + D : K(tot) assoc

which has precisely the same meaning as the text below:

A + B + C + D <==> ABCD : K(tot) assoc
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3.2 Reaction arrows

Any continuous sequence of characters beginning with the “<” character or ending
with the “>” character, appearing in the [mechanism] section, is interpreted as
an arrow. There are three types of arrows that can appear in the reaction mechanism.

• Single-sided arrows represent either an irreversible step or a part (either left-to-
right or right-to-left reaction) in a reversible step.

• Double-sided arrows represent reversible steps which might participate in rapid
equilibria, where rapid equilibrium computation is requested (see section ...).

• Double-sided arrows with asterisk represent reversible steps which do not par-
ticipate in rapid equilibria, even if rapid equilibrium computation was requested.

Examples of single-sided arrows:

-> --> -----> ----------->
<- <-- <----
=> ==> =====> ===========>
<= <== <====

Examples of double-sided arrows:

<-> <--> <-----> <----------->
<=> <==> <=====> <===========>

Examples of double-sided arrows for reversible steps that do not participate in
rapid equilibria:

<-*-> <--*--> <-----*----->
<=*=> <==*==> <=====*=====>

Examples of valid but unusual and undesirable notation for arrows in biochemi-
cal mechanisms:

<<===>> -.-.-.-> <::::>
<---->

Examples of invalid notation for arrows (please note the presence of blank char-
acters interspersed with non-blank characters):

- - > - - - - - > = = > ---- >
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3.3 Species names

Any continuous sequence of characters preceding the colon sign (:) on any line
in the [mechanism] section is interpreted as a name of a reaction species. The
names of reaction species must be at most 32 characters long, 1and must not contain
the following characters:

+ > < | ; :

Examples of recommended names for biochemical species

E E.S E_S E-S E*S
ESI E.S.I E*S*I
EAB E.A.B E*A*B E.P.Q.R.I EPQRI
NADP Mg Eu Ca

Examples of valid names for biochemical species which are not recommended:

tryptase*inhibitor ; quite long
x ; not expressive enough

Examples of invalid names:

enzyme*substrate*inhibitor*metal_ion ; too long
NADP+ Mg(2+) ; contains ’+’
E * S ; remove space

3.4 Rate and equilibrium constant names

Rate constants appear on each line in the mechanism after the colon sign (:). If a
mechanism step is reversible, there must be two rate constants present. If a mecha-
nism step is written with one-sided arrow, either because it is irreversible or because
it each step is written individually, only one rate constant must be present.

Names of rate constants may consist of any continuous series of at most 32 char-
acters, including the plus sign (+). A good practice is to keep the names of rate con-
stants short and descriptive. For example, the rate constant for substrate association
might be called ksa, and the rate constant for substrate dissociation might be named
ksd. Enzymologists who prefer numerical naming schemes are free to name the rate
constants accordingly.

Examples of valid rate constant names:

1 It is strongly recommended that names of reacting species be kept shorter than 8 characters.
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k1 k2 k3 K1 K2 K3
k_1 k_2 k_3 k+1 k-1
k ki ks
kas kds K(as) K(ds) kAS kDS
kai kdi k-ai k-di
kij kji k(i->j) k(j->i)

3.5 Constant rates in open reaction systems

DynaFit can be used for simulation and fitting of biochemical reactions occurring
in open systems, where certain species are being continuously supplied at a con-
stant rate, for example via a metabolic pathway. The same or other species may be
continuously removed at a constant rate, for example due to a deactivation on the
surface of the reaction vessel, or via a metabolic pathway.

Constant-rate steps are denoted in DynaFit by an arrow which does not have a
species on either the left- or the right-hand side. For example if the substrate of an
enzyme reaction is supplied to the system at a constant rate, vin, and if the product
is continuously removed at a constant rate, vout , we may write

[mechanism]
---> S : v(in)

P ---> : v(out)
etc.





Chapter 4
Rate and equilibrium constants

The values of rate constants or equilibrium constants are specified in the [constants]
section of the script file. While certain sections of the script file are optional, the
[constants] section must be present always.

The [constants] section lists the values of rate and equilibrium constants,
and (optionally) labels some or all of them as adjustable parameters. As is explained
in section 4.3, nominal values of rate constants depend both on the time scale and
on the concentration scale of the experiment.

4.1 Concentration and time scale

It is important to discuss the issue of properly scaling all rate constants, equilibrium
constants, and concentrations in such a way that round-off errors are minimized. It
is also important to remember that the time unit of all rate constants (for example
reciprocal seconds or minutes) must agree with the time unit of the experimental
data.

4.1.1 Concentration scale

Optimally all concentrations would take on numerical values that differ from unity
at most by three orders of magnitude.

For example, if the typical enzyme concentration in a series of experiments is
10 nM, and the typical concentration of the substrates and inhibitors is between 10
and 100 µM, then we should choose micromolar scale for all concentrations. The
reason is that 10−6 is between 10−8 M for the enzyme and 10−4 M for the substrate.
In this way both the numerical value of enzyme concentration (0.01 µM) and the
numerical value of the substrate concentration (100 µM) differ from unity at most
by two orders of magnitude.

47
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Once a proper scale of concentrations has been determined, it affects the nom-
inal values of two other quantities, namely, the bimolecular association rate con-
stants and the specific molar responses. For example, if all concentrations are ex-
pressed in µM, than all bimolecular association rate constants must be expressed in
µM−1sec−1 and all molar responses in signal (e.g. absorbance) change per µM.

Example 4.1 Micromolar concentration scale

In a series of protease assays, the concentration of the enzyme was 1 nM and the concentra-
tion of the substrate was 100 µM. The hydrolysis of a chromogenic peptide substrate was
followed at spectrophotometrically. At the given wavelength, the difference molar absorp-
tion coefficient is -1,300, meaning that a complete cleavage of one mole of the substrate
would produce a decrease of absorbance by 1,300 units in a one centimeter cell.

In this case the proper concentration scale is micromolar, which means that the nominal
concentration of the enzyme is 0.001 (micromoles per liter), and the nominal concentration
of the substrate is 100 (micromoles per liter). Assuming that the bimolecular association
rate constant is 108 M−1sec−1, the nominal value is 100 (liter per micromole per second).
The nominal value of the difference absorption coefficient is -0.0013 (absorbance units per
micromole per liter per centimeter).

In summary, all experimental data and fitting parameter (rate constants, concen-
trations, and molar responses) must use identical units. It is important to choose
concentration units in such a way that the numerical values of concentrations are
close to unity.

4.1.2 Time scale

The time scale of the experimental data must agree with the time scale of the rate
constants. Most published values of rate constants for biochemical reactions are in
reciprocal seconds. Therefore it is useful to convert all progress curve data files in
such a way that the readings of time are in seconds. DynaFit can convert existing
data files automatically, by properly setting the option Scale in the [Filter]
section of the initialization file.

Similarly, all initial velocity data should be transformed in such a way that the
reaction rates are expressed in concentrations (or other units such as absorbance or
fluorescence intensity) per second. If the initial velocity data were not generated by
DynaFit, it might be necessary to convert the data manually. DynaFit does not have
the ability to convert the time-scale of initial velocity data from minutes to seconds.

4.2 Formal rules

There are very few formal rules for writing down values of rate or equilibrium con-
stants in the [constants] section of the script file. Any number of rate constants,
separated by commas, can be listed on a single line, like this:
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[constants]
k1 = 0.1, k2 = 0.2 ?, k3 = 0.3 ??, k4 = 0.4

Alternatively the rate constants can be listed on separate lines with or without
trailing commas, like this:

[constants]
k1 = 0.1,
k2 = 0.2 ?

k3 = 0.3 ??
k4 = 0.4

Some example of incorrect notation follow.

Incorrect: Missing commas

[constants]
k1 = 0.1 k2 = 0.2 ? k3 = 0.3 ?? k4 = 0.4

Incorrect: Can’t assign multiple values

[constants]
k1 = k2 = 0.2 ?

4.3 Dimension and unit of scale

Before deciding on the initial estimates for the rate or equilibrium constants, we
must consider the dimensions and units. Let us consider in turn the dimension, the
unit (scale), and the magnitude of rate constants and of equilibrium constants.

4.3.1 Rate constants

In general the dimension of rate constants strictly follows from the molecularity
of the elementary reaction which they describe. Rate constants which describe
monomolecular reactions have the dimension [1/time], rate constants which de-
scribe bimolecular reactions have the dimension [1/concentration × 1/time], and
so on.

Thus in different kinds of rate constants there appear either one or two physical
quantities (either time, or time and concentration) for which we must select an ap-
propriate unit. The unit is determined by the experimental data we want to analyze.

The units of time and concentration used for the definition of rate constants must
agree with the units of time and concentration used to describe the experimental
data.

Example 4.2 Time scale in minutes
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reaction type order molecularity dimension of k

A k→ 0 (constant flux) concentration× time−1

A k→ B+ · · · 1 monomolecular time−1

A+B k→C+ · · · 2 bimolecular concentration−1× time−1

Table 4.1: Dimension of rate constants.

An enzyme reaction was followed by monitoring absorbance changes over time. The exper-
imental data are pairs of data values, representing absorbance (dimensionless) vs. time in
minutes. Therefore, unless the time axis for the data is first converted to seconds, the unit
of time must be min−1 for all first-order rate constants and concentration−1×min−1 for all
bimolecular rate constants.

The unit of time for rate constants is determined exclusively by the unit of time
used in the experimental data. On the other hand, the concentration unit for rate
constants is determined by two important factors, namely, the concentration unit for
reactants and the molar instrumental responses.

The unit of concentration for all bimolecular rate constants must be the same as
the unit in which concentrations or all reactants are also expressed. However, the
molar concentrations of reactants (products, substrates, catalysts) are never mea-
sured directly. Instead, the measuring device usually provides values of physical
quantities linearly related to concentrations, such as absorbance or optical rotation.
The proportionality constant is called the molar response coefficient. Thus, the unit
of concentration used for all bimolecular rate constants must correspond to the con-
centration unit obtained when the raw experimental data (in arbitrary instrumental
units such as absorbance or fluorescence) are converted to concentrations by using
the molar response coefficients.

Example 4.3 Micromolar units for molar response

An enzyme reaction was followed by monitoring absorbance changes over time. The exper-
imental data are pairs of data values, representing absorbance vs. time in minutes. Assume
that the concentrations throughout the script file are in the micromolar units (µM). There-
fore, unless the time axis for the data is first converted to seconds, the unit must be min−1

for all first-order rate constants and µM−1×min−1 for all bimolecular rate constants. One
mole-per-liter of the reaction product would an increase of absorbance by 12340 absorbance
units. Therefore, the molar response coefficient (see below) must be expressed in micromo-
lar units also, ε = 0.01234 (absorbance units per µM of product).



4.4 Initial estimates 51

4.3.2 Equilibrium constants

Similar considerations about the dimension the unit, and the magnitude apply for
equilibrium constants that appear in the DynaFit script files. The molecularity of
forward and backward elementary reactions determine the dimension of each equi-
librium constants. Some examples are given in table 4.2.

reaction type dimension of K

A
K
 B (none)

A+B
K
C concentration−1

C
K
 A+B concentration

A+A+A
K
 A3 concentration−2

Table 4.2: Dimension of equilibrium constants.

The scale of each equilibrium constant that appears in the mechanism is strictly
dictated by the concentration scale of the experimental data (e.g., mM, µM, or nM).
Thus, if the data are in the micromolar scale, all binary dissociation constants must
have the same scale, while all binary association constants have the scale µM−1, a
trimerization association constant would have the scale µM−2, and so on.

4.4 Initial estimates

Nonlinear regression analysis requires an intelligent guess of initial estimates, thus
data analysis should not (and cannot) be approached without prior knowledge. One
must have at least some ideas about the possible values of rate and equilibrium
constants that are relevant to the biochemical system at hand.

4.4.1 Association rate constants

In the case of bimolecular association rate constants, we must keep in mind that
their values for the association of enzymes with small molecules (e.g., drugs) usu-
ally are between 105 M−1sec−1 and 109 M−1sec−1. The bimolecular association



52 4 Rate and equilibrium constants

rate constants for protein-protein interactions are usually somewhat smaller. This
background information is applied when we approach the point in writing down the
script file below:

[mechanism]
E + S <=> ES : k ks
ES -> E + P : kr
E + I <=> EI : k kis
ES + I <=> EIS : k kii

[constants]
k = ...

It is recommended to decide on the values for bimolecular rate constants first,
keeping in mind that in many experimental situations their exact numerical values
cannot be determined. Often one can use estimates for the bimolecular rate con-
stants that are based on the theory of molecular diffusion. For many biochemical
mechanisms we may start with the value 106 M−1sec−1 for all bimolecular rate con-
stants. The fact that all three association rate constants in the above mechanism are
supposed to have equal value is represented by the fact that all of them are assigned
the same symbol.

Let us assume that in a set of experiments pertaining the mixed-type inhibition
mechanism above, all concentrations are on the micromolar scale. In that case all
bimolecular association rate constants have to have the scale µM−1× time−1. If the
units of time used for the description of the experimental data are seconds, then the
approximate nominal value of all bimolecular rate constants is

[constants]
k = 1.0 ; uM(-1)sec(-1)

because k ≈ 106 M−1sec−1 = 1.0 µM−1sec−1. If however the units of time used for
the description of the experimental data were minutes, than the same value of the
bimolecular rate constant would be expressed as

[constants]
k = 60.0 ; uM(-1)min(-1)

because k ≈ 106 M−1sec−1 = 60.0 µM−1min−1.
For many biochemical mechanisms it is reasonable to set the initial estimate of

all bimolecular association rate constants to 106 M−1sec−1.

4.4.2 Dissociation rate constants

Initial values for dissociation rate constants are much more difficult to estimate.
Usually we have some notion about the equilibrium constants, though, so from the
equilibrium constants and from the association rate constants (set to their diffusion
limit) we can deduce the initial estimate for the dissociation rate constant.

Example 4.4 Estimating dissociation rate constants
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A substrate for an enzyme reaction following the simple Michaelis-Menten mechanism is
expected to have the half-saturation point (Michaelis constant) in the millimolar range. The
association rate constant is supposed to be diffusion limited (106 M−1sec−1). From the reac-
tion velocity observed at saturation, it seems that one mole of the enzyme-substrate complex
would produce approximately 0.1 moles of the reaction product per second (turnover num-
ber kcat ≈ 0.1 sec−1). What is the order of magnitude for the dissociation rate constant?
First we need to realize that for the Michaelis-Menten mechanism, Km = (ks + kr)/k and
kcat = kr . From this we can estimate ks ≈ Km × k− kcat ≈ 1× 10−3 × 106 − 0.1 ≈ 1000
sec−1.

Very often it is sufficient to come up with crude estimates of rate constants,
within several orders of magnitude. Even without the arithmetic shown above we
can estimate the dissociation rate constants after several trial simulations. The goal
is to have the initial estimate of rate constants produce an qualitative agreement of
the simulated data with the experimental data. An agreement at least as good as is
shown in Figure 4.1 will probably be sufficient.
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Fig. 4.1: Example of an initial estimate suitable for starting the regression analysis.
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4.4.3 Equilibrium constants

Initial values for equilibrium binding constants are somewhat easier to obtain, in
comparison with rate constants. In the equilibrium binding experiment we usually
monitor a physical property such as fluorescence, or count of radioactivity per unit
of time, in dependence on the total concentration of certain biochemical species.

Let us assume that within the range of concentrations that were chosen by the ex-
perimenter, the observed physical quantity (absorbance, radioactivity) has changed
to a significant degree. Therefore, for the very initial estimate of simple dissociation
equilibrium constants we may take the median value of the experimental concentra-
tions.

Example 4.5 Estimating equilibrium constants

The equilibrium composition of six different biochemical mixtures containing 50 nM of
DNA was measured at different amounts of protein P (cP = 20, 40, 80, 160, 320, and 640
nM). The experimenter necessarily had to make a conscious choice of these concentrations,
based on some previous knowledge, or simply by increasing the concentrations until a de-
sired effect was in fact observed (e.g., partial or complete saturation). Assuming that the
choice of concentrations was sensible, the dissociation constant(s) probably fall within the
same range. Therefore we many first try KD ≈ 300 nM, which approximately the median
value of the experimental range.

For more complex binding mechanisms including several simultaneous equilib-
ria we usually already have an idea whether or not these different equilibria are
described by widely different equilibrium constants. It is however quite reasonable
to start the analysis by setting all equilibrium constants to the same value, because
DynaFit can often successfully optimize these values within three to six orders of
magnitude.

4.5 Linked rate constants

In many cases the rate constants appearing in the [mechanism] section are not
fully independent, but are instead mutually dependent in various ways. The three
main reasons for rate constant linking are as follows:

1. Ratios of rate constants (i.e., equilibrium constants) are known.
2. Rate constants are linked through statistical factors.
3. The reaction mechanism contains thermodynamic cycles.

These particular circumstances are addressed below in their turn.
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4.5.1 Known equilibrium constants

Assume that the given reaction mechanism contains a particular association rate
constant kon, and also a dissociation rate constant koff. The corresponding equilib-
rium dissociation equilibrium constant Kd = koff/kon is presumed to be known and
therefore it is to be treated as a fixed model parameter.

Under these circumstances we have two equivalent choices in the definition of
the the association and dissociation rate constants. Either koff can be expressed as
koff = Kd× kon, or kon can be expressed as kon = koff/Kd. In either cases we start
from a given numerical value of the equilibrium dissociation constant, for example,
Kd = 5 in the given concentration units. Then we can express the link between the
two dependent rate constants as follows.

Variant A

[constants]
koff = 5 * kon ; Kd = 5 = koff/kon

Variant B

[constants]
kon = 0.2 * koff ; Kd = 5, 1/Kd = 0.2

Please note that the linking syntax always includes the multiplication sign “*”.
Thus in the case of kon we must first compute the numerical value of 1/Kd and then
use it as a multiplication factor. Also note that the multiplication factor must stand
before the symbol of the relevant rate constant. In other words the notation 0.2 *
koff is valid whereas the algebraically equivalent notation koff * 0.2 is not.

4.5.2 Statistical factors

Rate constants or equilibrium constants appearing in the [mechanism] section
could be linked due to statistical factors expressing the independence of multiple
identical and non-interacting binding sites [2]. Thus for example in the case of two
ligand molecules binding to two identical and non-interacting binding sites, we must
use the following notation, in which the identity and independence of the two bind-
ing sites is expressed via the statistical factor “4”.

[mechanism]
L + R <==> R.L : Kd1 dissociation

L + R.L <==> L.R.L : Kd2 dissociation
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[constants]
Kd1 = ... ; any numerical value
Kd2 = 4 * Kd1 ; statistical factor

4.5.3 Thermodynamic cycles

The issue of thermodynamic cycles [1, p. 271] and the appropriate scripting notation
is best explained by way of an example. Let us consider the reaction mechanism
shown in Scheme 4.1, in which two co-substrates labeled A and B associate with the
enzyme E in random order, i.e., through two alternate pathways.

E E•A

E•B E•A•B

k1

k3

k5

k7

k2

k4

k6

k8

E + P + Q
k9

Scheme 4.1

According to fundamental laws of thermodynamics the eight rate constants k1
through k8 appearing in the cycle must satisfy the algebraic relationship expressed
in Scheme 4.2, namely, k1× k3× k5× k7 = k2× k4× k6× k8.

E E•A

E•B E•A•B

k1
E E•A

E•B E•A•B

=k1 × k3 × k5 × k7 k2 × k4 × k6 × k8

k3

k5

k7

k2

k4

k6

k8

Scheme 4.2
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The curved arrows in Scheme 4.2 illustrate a convenient mnemonic we can use.
Namely, tracing the cycle in clockwise direction and multiplying all rate constants
we encounter must produce a product that is equal to tracing the rate constants in
counter-clockwise direction. The reason is that the overall equilibrium constants
must be equal to unity.

The presence of a thermodynamic cycle in Scheme 4.1 requires that either one of
the eight rate constants k1 through k8 must be expressed in terms of the remaining
seven rate constants. The choice of this “dependent” rate constant must be made on
a cases-by-base basis, taking into account all all relevant background information.
For example, we could choose to express the rate constant k8 in terms of k1 through
k7, as

k8 = (k1 k3 k5 k7)/(k2 k4 k6) .

The corresponding DynaFit scripting notation is

k8 = (k1 k3 k5 k7) / (k2 k4 k6)

Please note that in this case the multiplication sign “*” is absent. The list of rate
constants to the left of the division sign “/” must contain exactly one fewer items
compared to the list of rate constants on the right. Both lists of rate constants must be
enclosed in parentheses. The code fragment below shows the appropriate notation
in context.

[data]
data = progress
...

[mechanism]
E + A <==> E.A : k1 k2
E.A + B <==> E.A.B : k3 k4
E.A.B <==> E.B + A : k5 k6
E.B <==> E + B : k7 k8
E.A.B --> E + P + Q : k9

[constants]
k1 = ... ; any numerical values for k1--k7
k2 = ...
...
k7 = ...
k8 = (k1 k3 k5 k7) / (k2 k4 k6) ; cycle!

The above notation is particularly important in data fitting as opposed to ex-
ploratory simulations. In any given heuristic simulation, we could of course choose
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the numerical values of all rate constants such that all relevant thermodynamic box
rules are perfectly satisfied. In contrast, in data fitting at least some of the rate con-
stants will be free-floating in the kinetic model.

Under those circumstances DynaFit will be adjust all free-floating rate constants
to achieve the best possible match to the experimental data, while at the same time
making sure that all thermodynamic cycle rules are fully satisfied. In the illustrative
example above, at every step the iterative least-squares refinement the value of k8 is
always recomputed from the current estimates of k1 through k7.

The current version of DynaFit does not have any ability to automatically discern
the presence of thermodynamic cycles in bona-fide kinetic models, i.e., in the anal-
ysis the reaction progress curves. It is the full responsibility of the investigator to
introduce the appropriate linking expressions similar to k8 = (k1 k3 k5 k7)
/ (k2 k4 k6), as many as necessary.

In contrast, in the analysis of equilibrium binding experiments or initial-rate en-
zyme kinetics under the rapid equilibrium approximation, DynaFit will automati-
cally “discover” thermodynamic cycles if any are present in the [mechanism]
section, and if necessary it will assure that the numerical values of all equilibrium
constants are fully consistent with the fundamental laws or thermodynamics.

References

1. Gilbert, H.F.: Basic concepts in biochemistry, 2nd edn. McGraw-Hill, New York (1999)
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Chapter 5
Concentrations

The script file section denoted as [concentrations] is optional. However, it
must be present file unless the concentration keyword is used in the [data]
section of the script file.

The [concentrations] section lists the values of concentrations and (op-
tionally) labels some or all of them as adjustable parameters. As was mentioned
before in section 4.3, nominal values of concentrations depend on the concentration
scale of the experiment.

5.1 Concentration scale

All concentrations mentioned anywhere in the script file must have the same con-
centrations scale (unit). It is optimal to choose a “natural” concentration scale for
the analysis of each experiment, so that the nominal values are as close to unity as
possible. This minimizes the truncation and round-off errors in numerical computa-
tions.

For example, if all concentrations are in the micromolar range, choose the micro-
molar unit throughout the script file. If some concentrations are very much different
from other concentrations, choose a unit of concentration which is a compromise
between the two values.

Illustrative example

Let us consider a biochemical reaction following the Michaelis-Menten reaction
mechanism shown in Listing 5.1. The assumed rate constants values were kaS = 106

M−1s−1 (kaS = 1.e+6 in the listing below); kdS = 20 s−1, and kdP = 5 s−1. The
concentration of enzyme was kept constant at [E] = 10−9 M (E = 1.e-9), while
the concentration of substrate [S] was varied between 0.5 ×10−3 M and 8 ×10−3

M (S = 0.5e-3, 1.0e-3, ..., 8.0e-3). The formation of one mole per
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liter of the reaction product P corresponds to an increase in the UV/Vis experimental
signal by 1500 absorbance units (P = 1500 in the responses section below).

Listing 5.1

; Concentration scale: moles per liter
[task]

data = progress
task = simulate

[mechanism]
E + S <==> ES : kaS kdS
ES --> E + P : kdP

[constants]
kaS = 1.e+6
kdS = 20
kdP = 5

[concentrations]
E = 1.e-9

[responses]
P = 1500

[data]
file f1.txt | conc S = 0.5e-3
file f2.txt | conc S = 1.0e-3
file f3.txt | conc S = 2.0e-3
file f4.txt | conc S = 4.0e-3
file f5.txt | conc S = 8.0e-3

[end]

In this example the concentrations vary between nM (10−9 M enzyme) to mM
(10−3 M substrate). Therefore the most natural unit of concentrations is µM (10−6

M). This scaling determines not only the numerical values of concentrations to be
used in the [concentrations] section (see Listing 5.2 below), but also the values of
the bimolecular association rate constants and the molar response coefficient. In
the case of the association rate constants, kaS = 1× 106 M−1s−1 becomes kaS = 1
µM−1s−1 (kaS = 1 in Listing 5.2). In the case of the molar response coefficient,
rP = 1500 a.u./M becomes rP = 0.0015 a.u./µM (P = 0.0015 in Listing 5.2).

Listing 5.2

; Concentration scale: micromoles per liter
[task]

data = progress
task = simulate

[mechanism]
E + S <==> ES : kaS kdS
ES --> E + P : kdP

[constants]
kaS = 1 ; was 1.e+6
kdS = 20
kdP = 5

[concentrations]



5.2 Global and local concentrations 61

E = 0.001 ; was 1.e-9
[responses]

P = 0.0015 ; was 1500
[data]

file f1.txt | conc S = 500 ; was 0.5e-3
file f2.txt | conc S = 1000 ; was 1.0e-3
file f3.txt | conc S = 2000
file f4.txt | conc S = 4000
file f5.txt | conc S = 8000

[end]

5.2 Global and local concentrations

Certain concentrations can be made global, that is, applicable to all datasets enu-
merated in the script files. The values of these global concentrations are listed in the
[concentrations] section. For example, all five progress curves mentioned
in the script file listed above were collected at the same enzyme concentration,
[E] = 0.001 µM. Therefore the script contains the notation

[concentrations]
E = 0.001

Now let us assume that the enzyme concentration varied from one dataset to an-
other, as did the substrate concentration. In that case the [concentrations]
section might be omitted completely. Instead, each dataset would be assigned a
unique value for both concentrations as is shown in Listing 5.3.

Listing 5.3

[task]
data = progress
task = simulate

[mechanism]
E + S <==> ES : kaS kdS
ES --> E + P : kdP

[constants]
kaS = 1
kdS = 20
kdP = 5

[responses]
P = 0.0015

[data]
file f1.txt | conc S = 500, E = 0.001
file f2.txt | conc S = 1000, E = 0.002
file f3.txt | conc S = 2000, E = 0.003
file f4.txt | conc S = 4000, E = 0.004
file f5.txt | conc S = 8000, E = 0.005

[end]
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If a concentration value is listed in the [concentrations] section (global
value) and simultaneously in the [data]section (local value), the local value takes
precedence over the global value.

The distinction between concentrations considered as global or local parameters
becomes very important when concentrations are treated as locally adjustable pa-
rameters. This is illustrated in Listing 5.4. In this example, all five datasets were
obtained with nominally identical enzyme concentration, [E] = 1 nM. However,
because of the inevitable titration error, the actual enzyme concentrations will al-
ways be slightly different going from one dataset to the next. To achieve satisfactory
global fit under these circumstances, it is necessary to treat all except one enzyme
concentration as adjustable parameters. This is indicated by the presence of question
marks after the notation E = 0.001 for all except one experimental data file.

Listing 5.4

[task]
data = progress
task = fit

[mechanism]
E + S <==> ES : kaS kdS
ES --> E + P : kdP

[constants]
kaS = 1
kdS = 20 ?
kdP = 5 ?

[responses]
P = 0.0015 ?

[data]
file f1.txt | conc S = 500, E = 0.001
file f2.txt | conc S = 1000, E = 0.001 ?
file f3.txt | conc S = 2000, E = 0.001 ?
file f4.txt | conc S = 4000, E = 0.001 ?
file f5.txt | conc S = 8000, E = 0.001 ?

[end]

5.3 Concentrations as optimized parameters

Initial or total concentrations can be treated as adjustable parameters. A given con-
centration value can be optimized globally or locally. Global optimization means
that the same best-fit value of an optimized concentration applies to all datasets
analyzed together, whereas local optimization means that the given adjustable con-
centration applies only to the given dataset.
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These concepts are illustrated in Listing 5.5. In that particular example the en-
zyme concentration was optimized globally, across all five experimental datasets,
whereas the substrate concentration was optimized locally.

Listing 5.5

[task]
data = progress
task = fit

[mechanism]
E + S <==> ES : kaS kdS
ES --> E + P : kdP

[constants]
kaS = 1
kdS = 20 ?
kdP = 5

[concentrations]
E = 0.001 ? ; best-fit value applies to all 5 datasets

[responses]
P = 0.0015 ?

[data]
file f1.txt | conc S = 500
file f2.txt | conc S = 1000 ?
file f3.txt | conc S = 2000 ?
file f4.txt | conc S = 4000 ?
file f5.txt | conc S = 8000 ?

[end]

5.4 Linked concentrations

Two or more concentrations can be linked together, meaning that their values are
either identical or related through a constant factor. There are two ways to arrange
for linking between concentration values:

1. Linking between reaction species names
2. Linking to an arbitrary parameter name

5.4.1 Linking between reaction species names

This type linkage is best explained by way of an example. Let us assume that the
nominal concentration of reactant A appearing in the given reaction mechanism
was [A] = 1.23 mM. The actual concentration of A is supposed to be determined
from the available experimental data (titration error). Let us also assume that, for
some specific reason, the concentration of the reactant B is always one fourth of the
concentration of A. This scenario would be notated in DynaFit as follows:
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[concentrations]
A = 1.23 ?
B = 0.25 * A

In general, the notation format is

[concentrations]
SPECIES_X = NUMERICAL_FACTOR * SPECIES_Y

This notation must be followed even if the two linked concentrations are sup-
posed to be exactly identical. For example, in the current version of DynaFit it is
not syntactically valid to write A = B if we mean [A] = [B]; the correct notation is
A = 1 * B instead, because the numerical factor (in this case “1”) and the multi-
plication symbol “*” must always be present.

Illustrative example

An enzyme inhibitor might be a 1:1 mixture of two enantiomers with S and R stere-
ochemical configuration, respectively. Let us assume that the dose-response curve
for the enantiomeric mixture of both stereoisomers was measured by varying the
concentration of the inhibitor between zero to 100 µM. Let us also assume that both
enantiomers have nonzero inhibitory activity, measured by the inhibition constants,
Ki(S) = 10 nM and Ki(R) = 40 nM, respectively. If the enzyme is titrated with the
enantiomeric mixture, the concentration of the S and the R enantiomers are varied
simultaneously. This can be indicated in the script file by making the S enantiomer
as the varied component, and then linking the concentration of the R enantiomer via
the relationship [(S)I] = [(R)I]. Such a scenario is described in Listing 5.6.

Listing 5.6

[mechanism]
E + S <==> E.S : Ks dissoc
E.S --> E + P : kcat
E + (S)I <==> E.(S)I : KiS dissoc
E + (R)I <==> E.(R)I : KiR dissoc

[concentrations]
E = 0.01
(R)I = 1 * (S)I ; <=== linkage

[data]
variable (S)I ; <=== (R)I is also varied!
mesh from 0 to 0.1 step 0.01
...
file f1.txt | conc S = 10
file f2.txt | conc S = 20
file f3.txt | conc S = 40
file f4.txt | conc S = 80
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For a complete working example, see the script file 01.txt located in the directory
./manual/conc/link/species distributed with the program. EXAMPLE SCRIPT

5.4.2 Linking to an arbitrary parameter

This relatively complex scenario is best illustrated by way of an example. Let us
assume that experimental data files f1 through f4 were obtained at 10 nM nomi-
nal concentration of the enzyme, [E]1 = 10 nM. However, we wish to determine the
actual (active site) concentration of the enzyme from the experimental data. Further-
more, we have available data files f5 through f8, in which the nominal concentration
of the enzyme was twice as high as in the first case, [E]2 = 20 nM. Again, we wish
to determine the actual enzyme concentration from these four datasets, if possible.
To accomplish this task we can use the notation similar to what is shown in Listing
5.7.

Listing 5.7

[parameters]
cE1 = 10 ? ; nM
cE2 = 20 ? ; nM

[data]
...

graph E1

file f1 | conc E = 1 * cE1
file f2 | conc E = 1 * cE1
file f3 | conc E = 1 * cE1
file f4 | conc E = 1 * cE1

graph E2

file f5 | conc E = 1 * cE2
file f6 | conc E = 1 * cE2
file f7 | conc E = 1 * cE2
file f8 | conc E = 1 * cE2

In Listing 5.7 we defined two arbitrary model parameters called cE1 (“first en-
zyme concentration”) and cE2 (“second enzyme concentration”). Those parame-
ters are defined in the special [parameters] section and, importantly, are both
treated as adjustable in the regression model. This is indicated by the presence of
the question marks after the numerical values.

Subsequently, in the [data] section, we had arranged the eight available data
files into two separate groups. In the first group, comprised of experimental data
files f1 through f4, the enzyme concentration is set equal to the parameter cE1. In
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the second group, comprised of experimental data files f5 through f8, the enzyme
concentration is set equal to the parameter cE2. Within both groups of data files,
the enzyme concentration will be exactly identical and yet it will also be subject to
optimization in the regression analysis.

For a complete working example, see the script file 01.txt located in the directory
./manual/conc/link/param distributed with the program.EXAMPLE SCRIPT



Chapter 6
Specific molar responses

The program’s primary function is to fit experimental data obtained on a (bio)chemical
system, either by following the reaction time-course, by measuring the initial reac-
tion velocity, or by measuring the composition at equilibrium. In either case, it is
important to realize that the reacting system is always observed by using a specific
physical apparatus or instrument. For example, the interacting system might be ob-
served by using one of many experimental techniques enumerated below:

• fluorescence spectroscopy;
• UV/VIS absorption spectroscopy;
• IR spectroscopy;
• NMR spectroscopy;
• HPLC peak area integration;
• optical densitometry (gel shift assays);
• radiochemical methods;
• conductivity;
• polarimetry;
• mass spectrometry;
• other instrumental methods.

The main point to emphasize is that concentrations are never observed directly.
Instead, we always observe a specific physical signal (e.g., absorbance or peak area).
Importantly, DynaFit always assumes that the experimentally observed physical sig-
nal is related to the concentrations of reactants by a linear relationship.

6.1 Linearity assumption

Specific molar responses are proportionality constants relating concentrations to
the observed instrumental response. Molecular species with zero response coef-
ficients need not be listed in the script file. If a species is not mentioned in the
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[responses] section (or after the response keyword for local response coef-
ficients) it is assumed that its molar response coefficient is zero.

DynaFit recognizes two fundamentally different types of physical variables that
can be observed in any given experiment, namely, extensive physical variables and
intensive physical variables.

6.1.1 Extensive physical variables

Experimentally observed value of extensive physical variables are proportional to
concentrations of molecular species present in the given sample, according to Eqn
(6.1), where F is the observable experimental signal; F0 is the instrument offset
(“baseline” signal); nS is the number of molecular species present in the sample;
ri is the specific molar response coefficient of the ith species; and ci is the species
concentration.

F = F0 +
nS

∑
i=1

ri ci (6.1)

Examples of extensive physical variables include fluorescence intensity or NMR
peak area.

6.1.2 Intensive physical variables

Experimentally observed value of extensive physical variables are proportional to
mole fractions of observable molecular species present in the given sample, accord-
ing to Eqn (6.2). Please note that the summation in the denominator of Eqn (6.2)
includes only those molecular species that can be legitimately assigned nonzero
specific molar response coefficient.

F = F0 +

nS

∑
i=1

ri ci

nS

∑
i=1

δi ci

(6.2)

δi =

{
0 if ri = 0

1 if ri > 0
(6.3)

Examples of intensive physical variables include fluorescence polarization or
NMR chemical shift. The following notation specifies in DynaFit scripts that the
observable physical quantity is intensive:
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[responses]
intensive
...

The global [responses] section of the script must contain the keyword
intensive standing on a separate line. Intensive and extensive response coef-
ficients cannot be mixed in any given script.

6.1.3 Uniform scaling and concentration units

As was mentioned before in section 4.3, nominal values of molar responses depend
on the concentration scale of the experiment. The same concentration unit (e.g., mM,
µM, or nM) must be used for the following quantities:

• concentrations of reactants;
• specific molar responses;
• bimolecular association rate constants;
• equilibrium constants.

For example, let us assume that we chose micromolar units throughout the given
DynaFit script. Let us further assume that:

• the initial concentration of the reacting species S is 3.4×10−4 M;
• the bimolecular association rate constant kon has the value 4.5×105 M−1s−1;
• the dissociation equilibrium constant Ki has the value 5.6×10−9 M;
• the UV/Vis extinction coefficient of the observable species P is 6.7× 103

M−1cm−1.

In this specific case, after appropriately scaling all relevant quantities to micro-
molar units, the DynaFit script will contain the following notation:

[concentrations]
S = 340

[constants]
k(on) = 45
Ki = 0.0056

[responses]
0.0067

In the specific of the molar response coefficient, if one mole per liter of product P
would give rise to 6.7×103 absorbance units, as is indicated above, then one micro-
mole per liter will give rise to an absorbance change one million times lower, i.e.,
0.0067 as is shown in the [responses] section of the DynaFit code fragment.
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6.2 Global response coefficients

Global response coefficients, applicable to all datasets mentioned in the given script
file, are listed in the [responses] section. The formalism is illustrated in the
code snippet below, where A, B, and C are labels for chemical species appearing in
the reaction mechanism.

[responses]
A = 1.23
B = 3.45
C = 5.67

Example 1: UV/Vis spectroscopy

Substrate S is converted to the reaction product P by a catalytic action of an en-
zyme. The substrate has molar absorptivity (extinction coefficient) ε = 12,000
M−1cm−1, while the reaction product has practically zero extinction coefficient
at the given wavelength. Let us assume that all concentrations in the given script
file are expressed in micromolar units. Thus, one µM of substrate corresponds to
12,000×10−6 = 0.012 absorbance units. In this case the DynaFit script will con-
tain the following notation:

[mechanism]
E + S <==> ES : kaS kdS
ES ---> E + P : kdP

[responses]
S = 0.012

In this specific example case it is assumed that the concentration of the substrate
is very much larger than the concentration of the enzyme catalyst, so that we can
ignore the absorbance due to the Michaelis complex ES.

Example 2: Polarimetry

Michaelis & Menten (1913) followed the changes in optical rotation caused by the
hydrolytic action of invertase. In their instrumental setup, one mole per liter of sac-
charose would cause optical rotation of +42.5 degrees, while one mole per liter of
the reaction product mixture would cause optical rotation of -13.3 degrees. Assum-
ing that all concentrations throughout the script file are expressed in millimoles per
liter, we will set up the script file (neglecting the optical rotation due to the Michaelis
complex) as follows:

[mechanism]
E + S <==> ES : kaS kdS
ES ---> E + P : kdP
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[responses]
S = +0.0425
P = -0.0133

[concentrations]
...

6.3 Local response coefficients

Often we can collect data files which pertain only to individual chemical species.
The most simple case is when the chemical species are first separated by using a
physico-chemical separation technique (chromatography, electrophoresis), and sub-
sequently some instrumental signal is measured for each species separately.

Another possibility is to have available a spectroscopic technique which (with-
out separation of chemical components) can provide individual signals for sev-
eral species present in the reaction mixture (e.g., multi-wavelength UV/VIS spec-
troscopy).

In both cases we can use the keyword response listed after the name of the
corresponding dataset to assign molar response coefficients.

Example 3: Gel shift assay

A mixture of radioactive DNA, a DNA-binding protein, and two different types of
protein-DNA complexes (PDNA and P2DNA) is separated by electrophoresis. Ra-
dioactive areas of the gel plate, each corresponding to a different chemical species,
are quantified by using a phosporimetric technique. Each dataset (P-DNA.txt and
P2-DNA.txt) then contains pairs of data point, where the independent variable is
the total concentration of the protein, and the dependent variable is the experimental
signal from the phosphorimeter.

[mechanism]
DNA + P <==> P.DNA : K1 dissoc
P.DNA + P <==> P.DNA.P : K2 dissoc

...
[data]

variable P
file P-DNA.txt | response P.DNA = 1234
file P2-DNA.txt | response P.DNA.P = 1 * P.DNA

In the above example, it is important that the species for which response coef-
ficients are not listed are assumed to be spectroscopically “invisible” in the given
dataset (zero response coefficient).
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6.4 Difference response coefficients

In many cases both the substrate and the product will have nonzero molar response
coefficients in the given experiment. For example, in the enzymatic hydrolysis
of para-nitrophenylalanine peptides, the absorbance upon cleavage next to para-
nitrophenylalanine changes by about 10%. In such cases it is often useful to consider
the differential molar response coefficient (i.e., the difference between the response
coefficients of the reactants and products) as the only information needed to describe
the kinetic assay, while the molar response coefficient of either the reactants or the
products can be considered as zero.

Example 4: UV/VIS Spectrophotometry

An enzyme reaction converts the substrate S (molar absorption coefficient εS =
1,300 M−1cm−1at the given wavelength) to the products P (εP = 900 M−1cm−1)
and Q (εP = 0). Let us assume that all concentrations throughout the script file are
in micromolar units. The conversion of one micromole per liter of the substrate will
cause a decrease of absorbance by 0.0004 absorbance units.

[task]
data = progress
...

[mechanism]
E + S <==> ES : kaS kdS
ES ---> E + P + Q : kcat

[responses]
P = -0.0004 ; response S = 0.0 assumed

[data]
offset = auto ?

In the example above, the keyword auto standing next the offset in the
[data] section orders the program to construct the simulated progress curve by
assuming that it is offset on the signal axis. The magnitude of this offset is given by
the first experimental data point.

6.5 Analysis of reaction velocities

In the analysis of (initial) reaction velocities, there are several special considerations
with regard to molar response coefficients. Occasionally the initial velocity data
might be expressed in different time units (e.g., absorbance units per minute) then
the rate constants are (reciprocal seconds). In such cases, the response coefficient
must reflect the disparity in time units.
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Example 5: UV/VIS Spectrophotometry

As in the previous example, an enzyme reaction converts the substrate S (molar
absorption coefficient εS = 1,300 M−1cm−1at the given wavelength) to the prod-
ucts P (εP = 900 M−1cm−1) and Q (εP = 0). Let us assume that all concentrations
throughout the script file are in micromolar units. The conversion of one micromole
per liter of the substrate will cause a decrease of absorbance by 0.0004 absorbance
units. However the reaction velocities, listed in the second column of the dataset, are
in milliOD per minute. Therefore, we must first multiply by 1000 and then divide
by 60 to obtain the correct nominal value of ∆ε :

[task]
data = rates
...

[mechanism]
E + S <==> ES : kaS kdS
ES ---> E + P + Q : kcat

[responses]
P = -0.00666 ; = -0.0004 / 60 * 1000

[data]
file rates.txt ; second column: milliOD/min

6.6 Optimized molar responses

The molar response coefficients can be treated as adjustable parameters. A given re-
sponse value can be optimized globally or locally. Global optimization means that
the same best-fit value of an optimized response coefficient applies to all datasets
analyzed together, whereas local optimization means that the given adjustable re-
sponse coefficient applies only to the given dataset. An example of a globally opti-
mized response coefficient is shown in Listing 6.1.

Listing 6.1

[mechanism]
E + S <==> ES : kaS kdS
ES ---> E + P : kdP
E + I <==> EI : kaI kdI
EI <==> EJ : kij kji

[responses]
P = 3.21 ? ; <== optimized globally

[data]
offset -1 ?

file i000 | conc I = 0
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file i001 | conc I = 1
file i002 | conc I = 2
file i004 | conc I = 4
file i008 | conc I = 8
file i016 | conc I = 16
file i032 | conc I = 32
file i064 | conc I = 64

For a complete working example, see the script file 01.txt located in the directory
./manual/resp distributed with the program.EXAMPLE SCRIPT

6.7 Linked molar responses

Two or more response coefficients can be linked together, meaning that their val-
ues are either identical or related through a constant factor. There are two ways to
arrange for linking between response values:

1. Linking between reaction species names
2. Linking to an arbitrary parameter name

6.7.1 Linking between reaction species names

This type linkage is best explained by way of an example. Let us assume that the
nominal response coefficient of reactant A appearing in the given reaction mecha-
nism was [A] = 1.23 arbitrary instrument units per mM. The actual response coef-
ficient of A is supposed to be determined from the available experimental data. Let
us also assume that, for some specific reason, the response coefficient of the reac-
tant B is always one fourth of the response of A. This scenario would be notated in
DynaFit as follows:

[responses]
A = 1.23 ?
B = 0.25 * A

In general, the notation format is

[responses]
SPECIES_X = NUMERICAL_FACTOR * SPECIES_Y

This notation must be followed even if the two linked responses are supposed to
be exactly identical. For example, in the current version of DynaFit it is not syn-
tactically valid to write A = B if we mean εA = εB; the correct notation is A = 1

* B instead, because the numerical factor (in this case “1”) and the multiplication
symbol “*” must always be present.
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6.7.2 Linking to an arbitrary parameter

This relatively complex scenario is best illustrated by way of an example. Let us
assume that experimental data files f1 through f4 were obtained in experiments
where the nominal molar response of the product P is εP,1 = 10 arbitrary instrument
units/µM. However, we wish to determine the actual response coefficient from the
experimental data. Furthermore, we have available data files f5 through f8, in which
the nominal response of the product was twice as high as in the first case, εP,2 = 20
arbitrary instrument units/µM. Again, we wish to determine the actual response co-
efficient from these four datasets, if possible. To accomplish this task we can use the
notation similar to what is shown in Listing 6.2.

Listing 6.2

[parameters]
rP1 = 10 ? ; a.u./mM
rP2 = 20 ? ; a.u./mM

[data]
...

graph P1

file f1 | resp P = 1 * rP1
file f2 | resp P = 1 * rP1
file f3 | resp P = 1 * rP1
file f4 | resp P = 1 * rP1

graph P2

file f5 | resp P = 1 * rP2
file f6 | resp P = 1 * rP2
file f7 | resp P = 1 * rP2
file f8 | resp P = 1 * rP2

In Listing 6.2 we defined two arbitrary model parameters called rP1 (“first prod-
uct response”) and rP2 (“second product response”). Those parameters are defined
in the special [parameters] section and, importantly, are both treated as ad-
justable in the regression model. This is indicated by the presence of the question
marks after the numerical values.

Subsequently, in the [data] section, we had arranged the eight available data
files into two separate groups. In the first group, comprised of experimental data files
f1 through f4, the product response is set equal to the parameter rP1. In the second
group, comprised of experimental data files f5 through f8, the product response is set
equal to the parameter rP2. Within both groups of data files, the product response
coefficient will be exactly identical and yet it will also be subject to optimization in
the regression analysis.





Chapter 7
Experimental Data

This chapter is focused on the [data] section of the DynaFit script files. At the
very minimum, the [data] section must contain at least one occurrence of the key-
word file or set (see below for a detailed explanation). However, the [data]
section can potentially contain a diverse list of other keywords, as shown in Table
7.1.

7.1 ASCII text format

All experimental data are represented in DynaFit exclusively in the plain text or
ASCII format. One simple test to determine whether or not a data file is in the plain
text format is to use a text-editing software to open it.

Examples of text editors include Notepad (Microsoft Windows) or TextEdit
(Mac OS X) or gedit (Linux). If a data file is readable by using a plain text or
ASCII editor software such as Notepad, it is a text file.

Another good indication that a data file is, in fact, in the appropriate plain text
format is the file name extension. For example, if a computer file is named with the
extension .txt or .dat, it is very likely to be a plain text file that can be examined
using a text editor software.

In converting spreadsheet files, such as Microsoft Excel files, to plain text format it is rec-
ommended to follow the following procedure: (1) create a blank plain text file and open it in
Notepad; (2) open the Excel file; (3) copy and paste plain text through the system clipboard.
Practical experience shows that the exporting plain text from software packages such as Mi-
crosoft Excel may not always be fully reliable. For example, problems were observed with
Excel 2010 running under Windows 7 Ultimate inside a Bootcamp subsystem on a Mac
OS X computer. Selecting File ... Save As ... ASCII in Excel 2010 produced extraneous
characters.
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KEYWORD NOTE
auto Offset is estimated from data
column Used in conjunction with ’sheet’
concentration Local concentrations
delay Mixing delay time
directory Directory holding data files
equilibrate ..., dilute X Concentration jump experiment
error constant X Experimental error
error constant X percent Experimental error
error data Experimental error
error exponential X Y Z Experimental error
error linear X Y Experimental error
error poisson X Experimental error
error power X Y Z Experimental error
error proportional X Experimental error
error quadratic X Y Z Experimental error
extension File name extension
file File name
graph Segregate global data files
incubate ..., dilute X, time Y Concentration jump experiment
maximum Cut-off time value in reaction progress
mesh from X to Y step Z Simulation or interpolation mesh
mesh logarithmic from X to Y step Z Simulation or interpolation mesh
monitor Plot state variables (concentrations)
offset Offset on the signal axis
parameter Special case of algebraic models
plot logarithmic Special plots
plot mole-fraction Special plots
plot titration Special plots
response Local molar responses
set Data set specified inside a script
sheet External file in spreadsheet format
shift Additive constant for progress data
variable Variable concentration

Table 7.1: DynaFit Keywords that can appear in the [data] section of the script.

7.1.1 Space-, comma-, and tab-delimited text files

The experimental data must be organized into columns of numbers separated by
space, comma, or the tab character. The rarely encountered semicolon-delimited
text files (auto-generated by certain scientific instruments) are not readable by Dy-
naFit. An example of an ASCII text file generated by a stopped-flow fluorescence
instrument [6] is shown in Figure 7.1.

The particular file name generated by the instrument, 3_5m_ch3_average.txt,
contains the extension .txt, which suggests that the data file is in plain text format.
The file does open in a text editor, and it does contain two columns of numbers sep-
arated by the tab character. The first column contains the reaction time in seconds,
whereas the second column contains the corresponding fluorescence intensity.
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Fig. 7.1: Example of an ASCII text file directly readable by DynaFit.

Most data files suitable for analysis by DynaFit are structured similarly to what
is shown in Figure 7.1.

7.1.2 Comments and annotations

The ASCII data files may optionally contain any number of text lines that serve
as comments or annotations. Such comments and annotations are ignored by the
software for the purpose of data analysis and serve only as an “electronic notebook”
for the benefit of the human reader.

The algorithm used within DynaFit to decide whether or not a given line should
be interpreted as a data line or a comment line is as follows. The program ignores
any leading white-space characters (blank spaces and tabs) standing at the beginning
of the line, and then reads any continuous sequence of non-blank characters (digits,
letters, and special characters such as period, plus, or minus). If the given sequence
can be interpreted as a valid number, the software will assume that the line represents
data as opposed to comments, and vice versa.

For example, the first 11 lines in Figure 7.1 start with the double quote character
("), which cannot legitimately appear in any representation of a numerical value.
Therefore the first 11 lines are ignored by DynaFit. The reading of actual data starts
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on line number 12, because that line starts with the text “0” (zero, a legitimate
number).

7.1.3 Masking individual data points

The algorithm for separating bona-fide data values from comments and annotations
can be used to conveniently exclude a given data point from analysis, while retaining
a record of the numerical value that was excluded. This is shown in a code snippet
below.

initial rates vs. substrate concentration
S,uM rate

10 0.2404
20 0.3650
30 0.4808

** 40 0.0012 outlier deleted! no enzyme?
50 0.5397
60 0.5348
70 0.5568
80 0.5369

In this example, the initial reaction rate corresponding to [S] = 40 µM was
clearly anomalous, perhaps because the operator omitted to add the enzyme. In such
clear-cut cases of gross experimental failures it is legitimate to manually delete the
recorded values. The two asterisks standing at the beginning of the “uncommented”
line mark the given data point for deletion while maintaining a clear record that
something went awry with the experiment.

7.2 External data files

Numerical data can be represented in DynaFit in two different ways, either as exter-
nal disk files, or as internal blocks of text embedded directly in the DynaFit script.
In the first case we need to identify the location of the external file in the computers
file system.

7.2.1 DynaFit startup directory

The DynaFit startup directory is the particular directory or folder, in which the
DynaFit executable program itself is located. This can be any directory or folder
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where the given user has “write privileges” under the operating system constraints.
For example, Figure 7.2 shows that the DynaFit startup directory is c:/Documents
and Settings/Petr/My Documents/DynaFit4, because that is where the DynaFit
executable file DynaFit.exe is located.

Fig. 7.2: DynaFit startup directory is the directory where the program itself is lo-
cated.

7.2.2 Relative and absolute path names

Within DynaFit scripts the location of data files can be identified in one two ways,
either by using absolute path names or by using relative path names. Absolute path
names are allowed only for DynaFit users holding the free educational license. Com-
mercial license holders must use relative path names. This constrains the location
of DynaFit data files only to the same disk drive, on which the DynaFit binary exe-
cutable file is located.

Relative path names represent the location of the DynaFit startup directory by
the period character (.). Any sub-directory nesting is indicated by forward slashes
(/). As an example of a relative path name, the following code snippet identifies a
data file located within the DynaFit startup directory “.”:

[data]
file ./examples/5alpha-reductase/data/i0.txt

More precisely, in this specific instance, DynaFit expects to find a data file named
i0.txt located inside the directory data, which is located inside the directory 5alpha-
reductase, which is located inside the directory examples, and finally examples
is located inside the DynaFit startup directory.

As an example of an absolute path name, the following code snippet identifies
a data file named d001.txt which is located on the logical drive X:. This could
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be a disk drive that is different from the particular disk drive hosting the DynaFit
executable program:

[data]
file X:/project/data/2014Apr02/d001.txt

Another example of an absolute path name is shown in the code snippet below,
where //DataServer represents a machine anywhere on the local area network.

[data]
file //DataServer/projectX/2014Apr02/d001.txt

7.2.3 Directories, files, and file name extensions

A potentially large group of data files to be analyzed together can be identified con-
veniently by using the keywords directory and extension. These keywords
must precede the first reference to the actual files (keyword file).

For example, let us assume that we wish to subject five separate data files named
f01.txt through f05.txt to global statistical analysis[2]. Let us further assume that
the data files are located in directory ./inhibition/progress/2014Apr02/data. The
analysis can be arranged as is shown in Listing 7.1.

Listing 7.1

[data]
file ./assays/2014Apr02/data/f01.txt | concentration I = 0
file ./assays/2014Apr02/data/f02.txt | concentration I = 1
file ./assays/2014Apr02/data/f03.txt | concentration I = 2
file ./assays/2014Apr02/data/f04.txt | concentration I = 4
file ./assays/2014Apr02/data/f05.txt | concentration I = 8

An abbreviated and perhaps more readable and understandable equivalent nota-
tion is shown in Listing 7.2.

Listing 7.2

[data]
directory ./assays/2014Apr02/data
extension txt

file f01 | concentration I = 0
file f02 | concentration I = 1
file f03 | concentration I = 2
file f04 | concentration I = 4
file f05 | concentration I = 8
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To generate the full path names for each of the five data files, DynaFit reuses
the values of directory, as a prefix, and extension, as a suffix. The period
preceding the file name extension automatically inserted by the program, as is the
forward slash separating the directory name and file name.

7.2.4 Revealing file extensions under Windows OS

The Microsoft Windows operating systems ship with a default configuration that
purposely hides file extensions of “known file types”. The consequence of this is
that distinct files that differ only in the “known” file extension will be presented
to the user as if they had the same file name. For example, the files MyFile.txt,
MyFile.ini, and MyFile.csv will be shown as having presumably an identical file
name MyFile, because all three file extensions (.txt, .ini, and .csv) are “known” to
the operating system.

This default behavior of the Windows operating systems can cause significant
confusion in using DynaFit. It is strongly recommended that all file name extensions
are properly revealed. The exact procedure to accomplish this will differ depending
on the particular version of MS Windows (WinXP, Win7, Win8, etc.). Under Win-
dows XP, the procedure is as follows:

1. Start the Windows Explorer program (“Start ... Programs ... Accessories”).
2. Select menu Tools ... Folder Options.
3. Click on the View tab.
4. Uncheck the box Hide extensions of known file types
5. Click the OK button.
6. Click the Apply to All Folders button.

See also Figure 7.3. The procedure under Windows 7 and Windows 8 is very
similar. If needed please consult a colleague who is well versed in the intricacies of
Microsoft Windows operating systems. The goal is to arrive a point where file name
extensions such as .txt or .exe are revealed in all directories.

7.3 Independent variables

7.3.1 Concentrations of reactants

In the analysis of complex bio/chemical equilibria or initial enzymatic reaction rates,
the [data] section must always begin with the keyword variable, followed by
name of the molecular species that is being treated as the independent variable. The
species name must be one of those that appear in the given reaction mechanism,
as defined in the [mechanism] section. In the illustrative code snippet below the
variable molecular species is named M.
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Fig. 7.3 Reveal hidden file
extensions for known file
types under the MS Windows
operating system. Start Win-
dows File Explorer and select
“View ... Options” from the
main menu, then uncheck
the box “Hide extensions of
known file types”.

[task]
data = equilibria ; or ’rates’

...
[data]

variable M
file ...

In special cases, there can be multiple simultaneously varied reactants. The de-
tails are discussed below in section 7.5.1.2.

7.3.2 Time as implied variable

In the analysis of the reaction progress, the variable keyword is omitted, because
DynaFit will automatically assume that the independent variable is the reaction time
appearing in the first column of each particular data file.

[task]
data = progress

...
[data]

file ...
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7.3.2.1 Mixing delay time

Very often the first recorded time point is artificially shifted on the time axis, due to
the mixing delay time.

Let us consider a realistic scenario from a biochemical laboratory.

Assume that the investigator might have initiated an enzyme reaction by adding an aliquot
of the enzyme stock solution to a substrate solution. At the very instant the enzyme and
substrate solutions are mixed, the enzyme reaction commenced. Now let us assume that
after mixing all reactants the reaction vessel (such as a 96-well microplate) was placed in
a mixing device (such as a 96-well microplate shaker) to achieve complete homogeneity of
the reacting solution. Let us assume that the duration of the mixing period was 60 seconds.
Only after the 60 second mixing period elapsed, the microplate was placed into a recording
instrument (such as a 96-well plate reader) and the changes in fluorescence intensity were
monitored over time.

It is very important to realize that in this hypothetical scenario the plate-reader will have
recorded all time values with a 60 second systematic error. In particular, whereas the digital
record produced by the plate reader might contain a series of time-point values such as t =
10, 20, 30, 40, ... seconds, in fact the first recorded time point (nominally t = 10 sec) was
recorded when the reaction was already proceeding for 70 seconds: 10 seconds in the plate
reader, plus 60 seconds previously in the plate shaker. Similarly, where the plate-reader
recorded t = 20 seconds, the reaction was already proceeding for 80 seconds, and so on.

One obvious way to account for the mixing delay time would be to manually cor-
rect all time values, produced by the recording instrument, and only then submit the
corrected data for analysis by DynaFit. Another equivalent method is to utilize the
keyword delay in the DynaFit script. If we wish to apply an identical mixing delay
correction to all data sets analyzed simultaneously, the general pattern is shown in
the code snippet below, where T stands for the mixing delay time in suitably chosen
units.

[task]
data = progress

...
[data]

delay T

file ...
file ...
file ...

Please note that the keyword delay appears before the first occurrence of the
keyword file. On the other hand, if we wished to make separate corrections to
individual data file, the general pattern is shown in the code snippet below, where
T1, T2 and so on stand for the differing mixing delay times in suitably chosen
units. In this case the delay keyword is placed after a particular occurrence of the
keyword file.

[task]
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data = progress
...
[data]

file ... | delay T1
file ... | delay T2
file ... | delay T3

The mixing delay time can optionally be treated as an adjustable model parame-
ter. This is achieved by placing a question mark after the estimated numerical value:

[task]
data = progress

...
[data]

delay 60 ?
...

However, this feature of DynaFit is relatively untested. The user is strongly en-
couraged to exercise caution and always use common sense to check the plausibility
of any “best-fit” values of the mixing delay time. Optimization of the mixing delay
time should be attempted only as a last-resort, in those specific cases where there is
independent evidence that the mixing delay time might have been recorded incor-
rectly and where the goodness of fit can be significantly improved.

7.4 Internal data sets

As an alternative to external data files, experimental data can be defined directly
within a particular DynaFit script, by using the keyword set and the [set:...]
section. The general syntax is shown in the code snippet below, where LABEL is an
arbitrary data set label.

[data]
set LABEL

...
[set:LABEL]
...
... numerical data block
...

An illustrative example is shown in Listing 7.3. In this case, the arbitrarily chosen
labels 16U11a and 16U11b are used to identify two sets of equilibrium binding
data to be analyzed in a global fashion [10].

Listing 7.3
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[task]
data = equilibria
task = fit

[mechanism]
E + D <==> ED : Kd1 dissoc
ED + D <==> EDD : Kd2 dissoc

[constants]
Kd1 = 0.05 ?, Kd2 = 1 ?

[concentrations]
E = 0.5

[responses]
intensive
E = 0.18 ?, ED = 0.22 ?, EDD = 0.28 ?

[data]
variable D
plot logarithmic
set 16U11a
set 16U11b

[set:16U11a] ;--------------------------------------
D,uM anisotropy

0.010 0.18554
0.025 0.18197
0.050 0.18631
...
...
1000. 0.24890
2500. 0.26131
5000. 0.26376

[set:16U11b] ;--------------------------------------
D,uM anisotropy

0.10 0.18561
0.25 0.18933
0.50 0.19280

...

...
5000. 0.27113
7500. 0.27234
10000 0.27444

[end]

For a complete working example, see the script file 01.txtlocated in the directory
./manual/data/intern distributed with the program. Dr. Alex Drohat (University of EXAMPLE SCRIPT
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Maryland) is gratefully acknowledged for providing the data originally published as
part of Figure 8 in ref. [10].

7.5 Data organization

The experimental data can be organized for DynaFit processing in two different
ways. Each line of input text can represent either a single experimental data point, or
it can represent multiple data points in a spreadsheet format, as is described below.

7.5.1 One data point per line

The most typical representation of experimental data in DynaFit is the classic two-
column format. The first column represents the independent variable, for example
reaction time in suitably chosen units (minutes or seconds). The second column
represents the observed physical quantity, for example fluorescence intensity or
UV/Vis absorbance. This particular arrangement of experimental, illustrated in the
code snippet below, is used in the analysis of the reaction progress.

[task]
data = progress

...
[set:time-vs-absorbance]
t,s A

1 0.009
2 0.023

... .....
100 0.987

In the analysis of initial reaction rates (enzyme kinetics), or in the analysis of
binding equilibria (biophysics), the independent variable is the total or analytic con-
centration of a particular reactant. The numerical value of this particular reactant’s
concentration is then listed in the first column of the data file.

7.5.1.1 Single variable reactant

In most initial enzymatic rate experiments, as well as in most biophysical binding
experiments, only one particular reactant’s concentration is varied while all other
reactants’ concentrations are held fixed. For example, in the study of enzyme inhi-
bition mechanisms, it is a common practice to vary the substrate concentration while
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keeping the inhibitor concentration fixed at various different levels. In this particular
case the experimental data set will contain either two columns or three columns.

In the two-column format, the first column always contains the variable reactant
concentration, while the second column contains the experimentally observed value
of whatever physical quantity that was being measured. If we also know the un-
certainty of each measurement, for example the standard deviation from replicated
measurements, then this uncertainty is entered in the optional third column.

Listing 7.4 illustrates how to arrange the experimental data from a series of
enzyme kinetics experiments, in which the substrate concentration was varied
(variable S) while the inhibitor concentration was kept fixed at various levels.

Listing 7.4

[task]
task = fit
data = rates
approx = rapid-equilibrium

[mechanism]
E + S <===> ES : Ks dissoc
ES + S <===> ESS : Ks2 dissoc
ES ---> E + P : kcat

E + I <===> EI : Ki dissoc
ES + I <===> ESI : Kis dissoc
ESI ---> E + P : kcatp

...

[data]
variable S

set i-0 | concentration I = 0
set i-1 | concentration I = 22
set i-2 | concentration I = 44
set i-4 | concentration I = 88

...

;------------------------------------------------------

[set:i-0]

I=0 uM initial rate (mean and std.dev., n = 3)
S,uM mean std.dev.

10 0.6466 0.1104
20 0.8069 0.0031
30 0.8529 0.0182
40 0.8351 0.0234
50 0.8635 0.0788
60 0.7571 0.1134
70 0.8282 0.1075
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80 0.7524 0.0406

[set:i-1]

I=22 uM initial rate (mean and std.dev., n = 3)
S,uM mean std.dev.
10 0.4156 0.0098
20 0.5671 0.0005
30 0.6046 0.0532
40 0.6102 0.0843
50 0.5940 0.0467
60 0.5480 0.0380
70 0.5915 0.0080
80 0.5723 0.0431

[set:i-2]

I=44 uM initial rate (mean and std.dev., n = 3)
S,uM mean std.dev.
10 0.3348 0.0172
20 0.4501 0.0120
30 0.4658 0.0401
40 0.4561 0.0532
50 0.5037 0.0724
60 0.4780 0.0192
70 0.4631 0.0008
80 0.4183 0.0204

[set:i-4]

I=88 uM initial rate (mean and std.dev., n = 3)
S,uM mean std.dev.
10 0.1925 0.0011
20 0.3163 0.0047
30 0.3644 0.0153
40 0.3688 0.0212
50 0.3820 0.0072
60 0.3888 0.0113
70 0.3865 0.0104
80 0.4095 0.0137

[end]

Each data point in Listing 7.4 is represented by three numerical values listed in
a single line of input text. The first numerical value is the variable substrate con-
centration, in micromoles per liter. The second value is the observed initial rate, in
absorbance units per second, computed as an average from three replicated mea-
surements. The third column is the associated standard deviation from replicates.



7.5 Data organization 91

7.5.1.2 Multiple variable reactants

In certain specific instances the experiment might involve simultaneous variation of
more then one reagent concentrations. DynaFit can accommodate any number of
such variable species. The generic notation is illustrated in the code snippet below,
where we assume that there were three simultaneously varied reactants, namely, the
enzyme (E), the substrate (S), and the inhibitor (I).

[data]
variable E, S, I
set multivar

[set:multivar]

E,uM S,uM I,uM rate

0.1 10 0 1.23
0.2 10 0 2.34
0.1 20 0 3.45
0.1 10 1 1.23
0.2 10 1 2.34
0.1 20 1 3.45
...
...

The variable line lists the names of simultaneous varied reactants. The
species names must match those appearing in the [mechanism] section. For N
simultaneously varied molecular species, the data will contain either N+1 or N+2
columns. The first N columns in the data file will contain the concentrations of
variable molecular species. The (N +1)th column will contain the observed exper-
imental signal. The optional (N + 2)th column, if any is present, will contain the
associated standard error from replicated measurements.

A realistic example taken from ref. [5] is shown in Listing 7.5, where P for “pro-
tein” is the cytochrome P450 enzyme, isoform E1, and L for “ligand” stands for
cytochrome P450 reductase, or CPR. The enzymatic activity of 1:1 and 1:2 protein–
ligand (more precisely, protein–protein) complexes was observed in a kinetic as-
say. The purpose of the experiment was to determine the stoichiometry of protein–
protein binding.

Listing 7.5

[task]
data = equilibria
task = fit

[mechanism]
P + L <===> P.L : Kd1 dissoc
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L + P.L <===> L.P.L : Kd2 dissoc
...

[data]
variable P, L
plot mole-fraction
set job04avg

...

[set:job04avg] ; Job plot - constant (P + L) = 0.4 uM

P, uM L, uM rate std.err

0.010 0.390 0.0697 0.0070
0.020 0.380 0.1919 0.0062
0.030 0.370 0.2639 0.0114
0.045 0.355 0.4728 0.0033
... ... ... ...
... ... ... ...
0.320 0.080 0.4728 0.0064
0.340 0.060 0.3287 0.0171
0.360 0.040 0.2233 0.0392
0.380 0.020 0.0724 0.0058

[end]

For a complete working example, see the script file 01.txt located in the directory
./manual/data/multi distributed with the program. See ref. [5] for experimental de-
tails. The data set shown here corresponds to Figure 3 on page 10196 of the original
journal article. See also Figure 7.4.EXAMPLE SCRIPT

7.5.2 Spreadsheet format

DynaFit can process external data files organized in the spreadsheet format. This
option is available only for experiments involving only a single independent vari-
able.

7.5.2.1 Types of independent variables

In the analysis of reaction progress data = progress the independent variable
is the reaction time. In that case the [data] section of the script does not need
to contain the variable keyword. The general notation for identifying a reaction
progress data set is shown in the code snippet below.

[task]
data = progress
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Fig. 7.4: DynaFit analysis produced by using the scrip shown in Listing 7.5.

...
[data]

sheet FILENAME
column N ; where N = 2, 3, 4, etc.

The above code fragment signifies that the spreadsheet file named next to the
sheet keyword will contain at least N+1 columns. The first column must contain
the reaction time, in suitably chose units. The Nth column (specified by the input
column N) will contain the experimental data values. Naturally, the lowest possi-
ble column number is 2.

In the analysis of biophysical equilibria or initial enzymatic initial rates, the gen-
eral notation patter in shown in the code snippet below. Please note the appearance
of the keyword variable.

[task]
data = rates ; or ’equilibria’

...
[data]

variable M
sheet FILENAME
column N ; where N = 2, 3, 4, etc.
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As before in the case of progress curves, the above code fragment signifies that
the spreadsheet file named next to the sheet keyword will contain at least N+1
columns. The first column must contain the total or analytic concentration of the
molecular species M, in suitably chose concentration units. The Nth column (spec-
ified by the input column N) will contain the experimental data values.

7.5.2.2 Independent variable column

By default the independent variable (e.g., time in the analysis of reaction progress)
is assumed to be located in the first column of the external spreadsheet file. If so, the
script does not have to explicitly specify that the first column holds the independent
variable. Thus, for example, the code fragment below implies that the independent
variable is located in column No. 1 for all three data sets, No. 1–3:

[data]
sheet FILENAME
column 2 ; data set #1
column 3 ; data set #2
column 4 ; data set #3
etc.

However, it is also possible to specify a the independent variable column sep-
arately for each individual data set. This done by using the notation exemplified
in the code snippet below, using the colon (:) to separate pairs of dependent and
dependent variables:

[data]
sheet FILENAME
column 1:2 ; data set #1
column 3:4 ; data set #2
column 5:6 ; data set #3
etc.

The above notation signifies that the independent variable (“X”) for data sets No.
1, 2, and 3 is located in columns No. 1, 3, and 5, respectively. The corresponding
dependent variable (“Y”) is located in columns No. 2, 4, and 6, respectively.

7.5.2.3 Multiple columns

It is possible to merge the contents of multiple columns to compose a data set. The
need for merging columns arises when handling independent replicates of a par-
ticular experiment. Merging is accomplished by listing multiple comma-separated
column numbers after the column keyword, as follows:

[data]
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sheet FILENAME
column 2,3,4 ; data set #1
column 5,6,7 ; data set #2
column 8,9,10 ; data set #3
etc.

In this example, the data set No. 1 will be created by merging the contents of
columns No. 2-4. Similarly, data set No. 2 will be created by merging the contents
of columns No. 5-7, and so on. It is assumed that the independent variable is in
column No. 1.

When multiple columns are merged, it is possible to preserve each individual
data point as a separate entity, or alternately it is possible to automatically compute
averages and standard deviations from replicates. In the latter case DynaFit will an-
alyze the averages. Averaging of merged columns can be accomplished by inserting
the following notation in the DynaFit script:

[settings]
{Filter}

AverageReplicates = yes

If replicates are automatically averaged, DynaFit will display the size of the com-
puted error bar (i.e., the standard error) in the graphical and numerical output files.

7.5.2.4 Experimental error column

The size of the error bar associated with each particular data point can also be en-
tered explicitly in the input spreadsheet. This is accomplished by using the keyword
error followed by the corresponding column number. Consider the following ex-
ample:

[data]
sheet FILENAME
column 1:2 error 3 ; data set #1
column 4:5 error 6 ; data set #2
column 7:8 error 9 ; data set #3
...

In this case the independent variable (e.g. the reaction time) for data set No. 1
is located in column No.1, the corresponding dependent variable (e.g. the observed
change in fluorescence intensity over time) are located in column No. 2, and the
experimental error associated with each data point is located in column No. 3. Sim-
ilarly for data sets No. 2 and 3.

The experimental errors are usually used only for the purpose of graphically
displaying the uncertainty of each individual data point. However, we can option-
ally perform weighted regression by specifying the the specified experimental error
should be used as a weighting factor:
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[data]
error data
...

7.5.2.5 Tab-, space-, or comma-delimited files

Tab- and space-delimited spreadsheet style text files have to contain the same num-
ber of items in each row and column. In other words, the rectangular data table or
matrix must be completely filled, with no missing values in any row.

In contrast, comma-separated spreadsheet style text files are allowed to contain
missing data points or “uncommented” data points (i.e., entries that cannot be inter-
preted as a valid number while reading from left to right). This implies that comma-
separated data files are allowed to contain an unequal number of items in individual
columns.

Given this flexibility of the comma-separated text files, it is highly recommended
that DynaFit users do utilize this type of input preferentially. A major advantage is
that all major spreadsheet software packages (e.g. Excel, Open Office, Libre Of-
fice, etc.) do allow convenient export of the experimental data as CSV (“Comma
Separated Values”) files.

The recommended procedure for submitting data files for analysis by DynaFit is
as follows:

1. Create a spreadsheet file in Excel or a similar program.
2. Save a given sheet as a CSV file.
3. Name the CSV file in the [data] section of a DynaFit script.
4. Identify the dependent and independent variables using the column keyword.

7.6 Local and global fit

The term global fit [2] refers to the particular kind of regression analysis, in which
certain model parameters are determined on the basis of multiple data sets combined
together and analyzed as one superset of pooled experimental data. In this manual
we will use the term local fit, or local optimization, to refer to the opposite scenario,
in which certain model are optimized such that their best-fit values apply only to
one particular data set in the global superset of pooled data. Importantly, a particular
organization of the [data] section of DynaFit scripts can be used to arrange either
for a global fit, or for a local fit, of optimized model parameters. The details are
explained in sections 5.2 and 6.2.
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7.7 Weighting

The objective function in least-squares minimization is defined in DynaFit as shown
in Eqn (7.1), where S is the weighted residual sum of squares; wi is the weighting
factor for the ith data point; nD is the total number of data points; fi is the ith data
value; and f̂i is the corresponding theoretical model value.

S =
nD

∑
i=1

wi
(

fi− f̂i
)2

(7.1)

By default, DynaFit always assigns unit weights to all data points (wi = 1 for
i = 1,2, . . . ,nD), which effectively results in unweighted regression. Unweighted
regression is appropriate in those cases where there is a sufficient reason to believe
that experimental errors associated with all individual data points are approximately
equal in magnitude, or, much more frequently, whenever there is no information
available about the possible distribution of experimental errors.

However, in certain cases we do have good information available about the statis-
tical distribution of experimental errors [8, 9]. In those cases it is prudent to perform
weighted regression by specifying a particular form of the error function, which
links the magnitude of the experimental error to the magnitude of the experimental
signal.

The weighting coefficients appearing in Eqn (7.1) are normalized such that the
sum of all weights adds up to the number of data points, according to Eqn (7.2). This
normalization is accomplished according to Eqn (7.3), where ei is the error function
evaluated for the ith data point, according to one of the methods described below.

nD

∑
i=1

wi = nD (7.2)

wi = nD
1/e2

i
nD

∑
i=1

1/e2
i

(7.3)

7.7.1 Non-constant variance error functions

The type of error function that will be used to assign experimental errors to each data
point is given the keyword error followed by one of the associated keywords, such
as linear or exponential, which in turn are followed by numerical values as
is described below.
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7.7.1.1 Linear error function

[data]
error linear X Y

The above code fragment signifies that DynaFit will use as error function Eqn
(7.4), where the constants X and Y by specified by the space-delimited encoding X
Y.

ei = X +Y fi (7.4)

A number of enzymatic initial rate datasets with varied substrate concentration
appears to conform to this error distribution model.

7.7.1.2 Quadratic error function

[data]
error quadratic X Y Z

The above code fragment signifies that DynaFit will use as error function Eqn
(7.5), where the constants X through Z by specified by the space-delimited encoding
X Y Z.

e = X +Y f +Z f 2 (7.5)

Mannervik et al. found that the error distribution a large experimental data set de-
rived from initial rate enzymatic studies conformed equally well to this polynomial
model and to the power function described below.

7.7.1.3 Exponential error function

[data]
error exponential X Y Z

The above code fragment signifies that DynaFit will use as error function Eqn
(7.6), where the constants X through Z by specified by the space-delimited encoding
X Y Z.

e = X +Y exp(Z f ) (7.6)

The exponential distribution of experimental error is an alternative to the poly-
nomial (quadratic) distribution and also to the exponential distribution.
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7.7.1.4 Power error function

[data]
error power X Y Z

The above code fragment signifies that DynaFit will use as error function Eqn
(7.7), where the constants X through Z by specified by the space-delimited encoding
X Y Z.

e = X +Y f Z (7.7)

The power error function is one of the earliest experimentally verified models
for the distribution of experimental errors in initial rate enzyme kinetic studies. In
particular, Mannervik et al. [1, 4] found that values of Z ranging from 0.8 to 1.0
were applicable to their particular system, depending on the given experimental
conditions. The value of Z = 1 corresponds to constant relative error.

7.7.2 Weighting by experimental error from replicates

[task]
task = fit

...
[data]

error data
file ...

...

The code fragment above, including the special designation error data, sig-
nifies that DynaFit will user-supplied error values embedded in the data file. In this
case the data file must contain an extra column containing the experimental uncer-
tainty. Typically this will be the standard deviation from replicated measurements.

However, one must exercise a great deal of caution in utilizing this particular fea-
ture. It can only be recommended for those special circumstances where the number
of replicates is greater than five. This rule of thumb has been well document in the
literature [12, 1]. However, typical biochemical or biophysical experiments include
at most n = 3 replicates (i.e. triplicates). Unfortunately with n ≤ 3 replication, it
can easily happen by accident that a particular replicated data point will be assigned
an exceedingly small uncertainty. As a consequence, this seemingly very “precise”
data point would unduly sway the results of the regression analysis.

Weighting by experimentally determined standard deviation from replicates should
be strictly avoided unless there exist at least five replicates for each individual data
point.
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7.7.3 Constant variance

As a special case of constant weighting comes into play in DynaFit simulations.
Constant (i.e. identical size) experimental error, normally distributed, can be added
to simulated data points by using the encoding error constant. There are two
methods to simulate constant noise, setting either the absolute magnitude or the
relative magnitude of the simulated error bars.

[task]
task = simulate

...
[data]

error constant X
...

The above code fragment signifies that DynaFit will simulate all data points with
an added pseudo-random noise distributed according to the Normal or Gaussian
distribution with zero mean and the standard deviation equal to X in absolute value.
In contrast, the code fragment below signifies that the standard deviation of the
Normally distributed pseudo-random noise will be equal to X percent of the largest
simulated signal value.

[task]
task = simulate

...
[data]

error constant X percent
...

Simulated data with superimposed pseudo-random noise are very useful in nu-
merical “experiments” focused on identifiability analysis and model discrimination
analysis.

7.8 Offset on the signal axis

As was pointed out in Chapter 6, DynaFit constructs the fitting model either ac-
cording to Eqn (6.1) for extensive physical variables or according to Eqn (6.2) for
intensive physical variables. The quantity F0 appearing in either of these equations
is the instrument baseline. It is the contribution to the overall observed experimental
signal that is not a property of the sample but it is the property of the instrument (a
“baseline” signal).

In most cases the baseline signal values needs to be treated as an adjustable model
parameter. There are two ways to proceed with the optimization, treating the base-
line offset either as a globally optimized model parameter applicable to a global
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superset of multiple combined data files, or as a locally optimized parameter, spe-
cific to a particular data set.

In order to determine the best-fit value of the instrument baseline that is pre-
sumably applicable to all data sets analyzed simultaneously, the general DynaFit
scripting pattern to be utilized is shown in the code snippet below, where X stands
for the baseline offset in suitably chosen instrument units.

[data]
offset X ?

file ...
file ...
file ...

Please note that the keyword offset appears before the first occurrence of the
keyword file. On the other hand, if we wished to determine the best-fit value of
baseline offsets that are specific to each individual data file, the general pattern is
shown in the code snippet below, where X1, X2 and so on stand for the differing
baseline values in suitably chosen units. In this case the offset keyword is placed
after a particular occurrence of the keyword file.

[data]

file ... | offset X1 ?
file ... | offset X2 ?
file ... | offset X3 ?

Very often, but not always, the most suitable initial estimate for the adjustable
baseline is the experimental signal recorded as the first time point in each progress
curve being analyzed. Under those circumstances we can use the special notation
offset auto as shown immediately below.

[data]

file ... | offset auto ?
file ... | offset auto ?
file ... | offset auto ?

7.9 Concentration jump experiments

With DynaFit we can analyze two distinct types of “concentration jump” experi-
ment. In the first kind the reaction mixture is brought to full equilibrium before
the final ingredient is added to trigger the kinetic phase of the experiment. In the
second type of experiment (the “double jump” experiment) certain components are
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pre-incubated for a specific amount of time, without necessarily achieving full equi-
librium. After the specified amount of time elapses, the final component is added to
trigger the kinetic experiment proper.

7.9.1 Equilibration (“single jump”)

In certain kinetic experiments it is beneficial (or, at times, even necessary) to first
pre-incubate certain interacting components, until full equilibrium is reached. At
that stage an additional reagent is introduced to trigger the dynamic phase of the
experiment. The general notation for this type of experiment is shown in the code
fragment below.

[task]
data = progress

...
[data]

file ...
equilibrate ... , dilute ...
concentration ...

For example, in the study of “time dependent” enzyme inhibitors, we often pre-
incubate the inhibitor with the enzyme until full equilibrium is reached. Only then
the substrate is added to trigger the enzymatic assay. To clarify the general notation
listed above, let us assume that during the pre-incubation phase the concentration
of the enzyme was [E] = 0.2 µMand the concentration of the inhibitor was [I] =
0.25 µM. To signify this fact, we will use the notation E = 0.20, I = 0.25
following the equilibrate keyword:

equilibrate E = 0.2, I = 0.25, dilute ...

Now let us assume that as the substrate solution is added to the pre-incubation
mixture, the total volume increases five fold. For example, in a 100 µLplate-reader
format, we could have added 80 µLof a substrate stock solution to 20 µLof the
incubation mixture. In this hypothetical case the final concentrations of the enzyme
and the inhibitor will be five fold lower (i.e., 20%) than before substrate addition.
This will be represented in the DynaFit script by using “0.2” as the dilution factor:

equilibrate E = 0.2, I = 0.25, dilute 0.2

Finally, let us assume that final concentration of substrate in the reaction mix-
ture was 8 µM. This is the numerical value we will place after the keyword
concentration on a separate line:

[data]
...
file F1
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equilibrate E = 0.2, I = 0.25, dilute 0.2
concentration S = 8

To review and summarize, the above DynaFit notation means that the data file
F1.txt originated in an experiment organized as follows:

• the concentrations of the enzyme and the inhibitor before dilution (i.e., during
the pre-incubation phase) were 0.2 µM and 0.25 µM, respectively;

• the concentration of substrate after dilution (i.e., during the kinetic phase
proper) was 8 µM; and that

• the preincubated sample was diluted five fold (1/5 = 0.2) upon the addition of
the substrate as the last component.

7.9.2 Incubation for a specific time (“double jump”)

The notation for the “double jump” experiment is very similar to the previous
case of the “single jump” experiment, with two exceptions. First, the keyword
equilibrate is replaced with incubate. Second, the dilution factor is fol-
lowed by the notation time Xwhere X is the preincubation time in suitably chosen
units (e.g., seconds). The general pattern is illustrated in the code fragment below.

[task]
data = progress

...
[data]

file ...
incubate ... , dilute ... , time X
concentration ...

7.10 Simulations

DynaFit can be profitably used not only for least-squares data fitting, but also for
heuristic simulations. In that case we have to somehow specify the layout of the
data points. This is done by using the keyword mesh. Often we wish to simulate
not the mathematically pure model curve, but rather we wish to generate quasi-
experimental data with superimposed pseudo-random noise. This is accomplished
in DynaFit by using the keyword error.

7.10.1 Spacing and scaling

[task]
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task = simulate
...
[data]

mesh from X to Y step Z

The above generalized code fragment signifies that DynaFit will simulate the
independent variable at values starting from X, ending with Y, and stepping by
an additive increment equal to Z. The values of X, Y and Z have to be positive
numbers. For example the notation below will simulate a reaction progress curve
with time-points placed at t = 0, 30, 60, 90, ..., 1740, 1770, 1800 seconds.

[task]
task = simulate
data = progress

...
[data]

mesh from 0 to 1800 step 30
...

It is also possible to specify a logarithmically spaced mesh of values for the
independent variable. The generalized notation is shown below:

[task]
task = simulate

...
[data]

mesh logarithmic from X to Y step Z

The above generalized code fragment signifies that DynaFit will simulate the
independent variable at values starting from X, ending with Y, and stepping by an
multiplicative increment equal to Z. For example the notation below will simulate
the equilibrium binding experiment with the concentration of the protein P placed
at [P] = 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 µM. In this case the independent
variable is rising by a factor of two (step 2) between each two successive values
of the protein concentration.

[task]
task = simulate
data = equilibria

...
[data]

variable P
mesh logarithmic from 0.1 to 12.8 step 2

...

In certain special cases we might wish to achieve irregular spacing of simulated
data point on the X-axis (i.e. the independent variable axis). For example, we might
wish to simulate an stopped-flow experiment where the spacing between adjacent
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time points change abruptly (perhaps by an order of magnitude) at some point in
the simulated experiment. In those specific cases we can prepare a named text file,
from which the program will read the values of independent variable to be used in
the simulation. The special notation is mesh file:

[task]
task = simulate

...
[data]

...
mesh file
file F1

...

In the above example the file F1.txt will be utilized both as input for the program
(to read the value of the independent variable form the first or only column stored
in the file) and also as the program’s output. The special notation mesh file is
available for the simulation all data types, either reaction progress curves, or enzy-
matic initial rates, or biophysical equilibria.

7.10.2 Experimental error

In DynaFit simulations the standard deviation of the normally distributed pseudo-
random noise can be either constant, as is described in section 7.7.3, or it could
be made dependent on the simulated values of the idealized (i.e., noise-free) model
curve. In the latter case we can use the same notation that is used to specify the
presumed distribution of experimental error for the purpose of nonconstant weights
in nonlinear regression. A variety of nonconstant error functions are describe in
section 7.7.1.

For example, if we wish to simulate an initial rate data set that conforms to the
quadratic polynomial distribution of errors [1], we would specify the quadratic poly-
nomial coefficients by using the following notation:

[task]
task = simulate
data = rates

...
[data]

variable S
...
mesh logarithmic from 8 to 256 step 2
error quadratic 0.0003 0.02 0.001
file F1

...
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7.11 Plotting

The keywords graph, plot and monitor can be used to generate several kinds
of useful graphical output.

7.11.1 Logarithmic plot

[data]
plot logarithmic

The code fragment above signifies that DynaFit will produce a plot of the best-
fit model function, superimposed on the experimental data, such that the horizontal
axis has logarithmic scaling. It is required that neither the experimental data set nor
the best-fit model function include a point with X-coordinate equal to zero. Only
positive numerical values can be plotted on a logarithmically scaled axis.

7.11.2 Mole fraction plot

In certain equilibrium binding studies it may be advantageous to maintain a con-
stant total concentration of interacting components, while their molar ratio is var-
ied. The results of such experiments are conveniently presented such that the ab-
scissa displays the mole fraction of the first varied component. The resulting graph
is called a “Job plot” according to its inventor [3]. DynaFit allows automatic con-
struction of mole fraction plots by inserting the line plot mole-fraction into
the [data] section of the input script.

[data]
plot mole-fraction

For a complete working example, see the script file 01.txt located in the directory
./manual/data/multi distributed with the program. An excerpt is shown in Listing
7.6.EXAMPLE SCRIPT

Listing 7.6

[data]
variable P, L
plot mole-fraction
set job04avg

...

[set:job04avg] ; Job plot - constant (P + L) = 0.4 uM

P, uM L, uM rate std.err
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0.010 0.390 0.0697 0.0070
0.020 0.380 0.1919 0.0062
0.030 0.370 0.2639 0.0114
0.045 0.355 0.4728 0.0033
0.060 0.340 0.5147 0.0144
0.090 0.310 0.6868 0.0216
0.120 0.280 0.8358 0.0004
0.140 0.260 0.9492 0.0031
0.160 0.240 1.0444 0.0645
0.200 0.200 1.0590 0.0071
0.220 0.180 0.9989 0.0412
0.240 0.160 0.7576 0.0196
0.260 0.140 0.8164 0.0021
0.280 0.120 0.6625 0.0288
0.300 0.100 0.5863 0.0086
0.320 0.080 0.4728 0.0064
0.340 0.060 0.3287 0.0171
0.360 0.040 0.2233 0.0392
0.380 0.020 0.0724 0.0058

In this experiment the protein P and ligand L concentrations were varied simul-
taneously such that the sum of both concentrations remained constant at [P]+ [L] =
0.4 µM. This is shown in the first two columns of the experimental data block in
Listing 7.6. DynaFit was used to fit the data to a 2:1 stoichiometric model, resulting
in a Job Plot shown in Figure 7.5.

Fig. 7.5 Mole fraction plot
generated by DynaFit, based
on the experimental data
shown in Listing 7.6. See also
Figure 3 in [5].
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7.11.3 Titration plot

In special cases, for example when there is a scarcity of available biological material,
an equilibrium binding experiment can be arranged such that aliquots of a ligand
stock solution are repeatedly being added to the same starting solution of the titrant.
Upon each addition the total concentration of the titrant changes, because of the
inevitable dilution. This nonstandard situation is handled in DynaFit by application
of the keywords titration.

[data]
plot titration

To arrange for the analysis of binding data from an experiment, in which
both interacting components change their concentrations in this particular way, the
variable line must list the names of two molecular species. The data block itself
must contain three columns. The first column will contain the final concentration of
the ligand being added; the second column will contain the final concentration of the
protein after each addition; and the third column must contain the observed experi-
mental signal. An illustrative example is shown in Listing 7.7. For a complete work-
ing example, see the script file 01.txt located in the directory ./manual/data/titr
distributed with the program.EXAMPLE SCRIPT

Listing 7.7

[data]
variable L, P
plot titration

set 1H.d | resp P = 8.9 ?, P.L = 8.8 ?
set 1H.e | resp P = 9.0 ?, P.L = 9.1 ?
set 1H.f | resp P = 8.0 ?, P.L = 8.1 ?

[set:1H.d]

L,mM P,mM shift

0.0000 0.1250 8.941
0.0328 0.1249 8.926
0.0655 0.1247 8.899
0.1307 0.1245 8.867
0.2603 0.1240 8.824
0.5164 0.1230 8.800
1.0161 0.1210 8.783
1.9688 0.1172 8.781

[set:1H.e]

L,mM P,mM shift

0.0000 0.1250 9.052
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0.0328 0.1249 9.055
0.0655 0.1247 9.060
0.1307 0.1245 9.072
0.2603 0.1240 9.090
0.5164 0.1230 9.098
1.0161 0.1210 9.111
1.9688 0.1172 9.110

[set:1H.f]

L,mM P,mM shift

0.0000 0.1250 7.966
0.0328 0.1249 7.977
0.0655 0.1247 8.021
0.1307 0.1245 8.050
0.2603 0.1240 8.090
0.5164 0.1230 8.124
1.0161 0.1210 8.138
1.9688 0.1172 8.141

Listing 7.7 displays in the first column the total concentration of a particular lig-
and (a model peptide representing histone H3); in the second column the total con-
centration of the RIZ1 tumor suppressor protein; and in the third column the chem-
ical shifts for three different proton nuclei located on the protein molecule. The raw
data were generously provided by Dr. Klára Briknarová (University of Montana).
Importantly, the data were generated by repeated addition of the peptide stock solu-
tion to the same NMR tube containing the protein sample. See also Figure 10.1 in
[7].

When DynaFit processes this type of data, identified by the keyword titration,
it produces a simple Cartesian plot of the observable physical variable plotted
against the final ligand concentration, on the horizontal axis. In this type of plot
it is implied that the total concentration of the target being titrated is continuously
changing from one data point to the next. The plot generated by DynaFit for the data
shown in Listing 7.7 is shown in Figure 7.6

7.11.4 Multiple graphs

Occasionally it is useful or even necessary to perform the global fit of very disparate
data sets, with widely differing ranges of the experimental data. For example, one
might wish to combine observations of changes in proton chemical shifts, ranging
typically from 5 to 10 ppm in the observed signal, with observations of changes
in nitrogen chemical shifts, ranging typically from 110 to 130 ppm. The general
notation suitable for this type of global analysis relies on the keyword graph, as is
shown in the code fragment below.
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Fig. 7.6 Protein 1H chemical
shift titration plot generated
by DynaFit, based on the
experimental data shown
in Listing 7.7. Both protein
and ligand concentrations
were varied, although only
the changes in the ligand
concentration are shown in
the graph.

[data]
...

graph GRAPH-1

file A
file B
file C

graph GRAPH-2

file D
file E
file F

[end]

In the code fragment above, GRAPH-1 and GRAPH-2 stand for any arbitrary
labels the use can give to different graphs to be produced by DynaFit. Each sepa-
rate graph will collect within it only those plots that are associated with the data set
names immediately following. In this case, GRAPH-1 will display only plots cor-
responding to the data files A – C, whereas GRAPH-2 will display only data plots
corresponding to data file D – F. Importantly, all six data files A – F will be ana-
lyzed together, in the global fashion [2]. A representative example shown in Listing
7.8.

Listing 7.8
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[data]
variable L, P
plot titration

graph 1H

set 1H.d | resp P = 8.9 ?, P.L = 8.8 ?
set 1H.e | resp P = 9.0 ?, P.L = 9.1 ?
set 1H.f | resp P = 8.0 ?, P.L = 8.1 ?

graph 15N

set 15N.a | resp P = 118 ?, P.L = 119 ?
set 15N.b | resp P = 117 ?, P.L = 116 ?
set 15N.c | resp P = 122 ?, P.L = 121 ?

; -------------------
; 1H CHEMICAL SHIFTS
; -------------------

[set:1H.d]

L,mM P,mM shift

0.0000 0.1250 8.941
0.0328 0.1249 8.926
0.0655 0.1247 8.899
0.1307 0.1245 8.867
0.2603 0.1240 8.824
0.5164 0.1230 8.800
1.0161 0.1210 8.783
1.9688 0.1172 8.781

[set:1H.e]

...

; -------------------
; 15N CHEMICAL SHIFTS
; -------------------

[set:15N.a]

L,mM P,mM shift

0.0000 0.1250 118.215
0.0328 0.1249 118.271
0.0655 0.1247 118.361
0.1307 0.1245 118.482
0.2603 0.1240 118.540
0.5164 0.1230 118.682
1.0161 0.1210 118.747
1.9688 0.1172 118.735
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[set:15N.b]

...

In Listing 7.8 the notation graph 1H signifies that the three proton shift data
sets labeled 1H.d, 1H.e, and 1H.f should be grouped together in one graph, la-
beled 1H. In turn the notation graph 15N signifies that the three nitrogen chemi-
cal shift data sets labeled 15N.a, 15N.b, and 15N.c should be grouped together
in a separate graph, labeled 15N. Very importantly, all six data sets are analyzed
together in a global fashion [2]. The reason for this segregation into two graphs is
that the proton shift range (8–9 ppm) is very different from the nitrogen shift range
(116–122 ppm). If all data sets were plotted in the same graph, all six plots would
appear completely flat. The actual display produced by DynaFit is shown in Figure
7.7, in which the results of fit are very easily grasped upon visual inspection.

Fig. 7.7: Protein 1N and 15N chemical shift titration plot generated by DynaFit,
based on the experimental data shown in Listing 7.8. All six data sets are analyzed
together [2] and are segregated into two groups of three only for the purpose of
plotting.

For a complete working example, see the script file 02.txt located in the directory
./manual/data/titr distributed with the program.EXAMPLE SCRIPT
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7.11.5 Concentration plot: State variables

In the analysis of the reaction progress, it is very often advantageous to examine
not only the best-fit model curve overlaid on the experimental data, but also the
corresponding plot of underlying concentrations of some or all molecular species.
This accomplished by using the keyword monitor, followed by a comma-separate
list of molecular species we wish to monitor. The general pattern is shown in the
code fragment below.

[data]
...

monitor MOLECULAR SPECIES LIST

file ...
file ...
file ...

Depending on the physical representation of the experimental data, the keyword
file appearing in the code snippet above might be replaced with set or column.
A realistic example is shown in Listing 7.9. For a complete working example, see
the script file 02.txt located in the directory ./manual/data/monitor distributed with
the program. EXAMPLE SCRIPT

Listing 7.9

[mechanism]
E + S <===> ES : kaS kdS
ES ----> E + P : kdP
E + I <==> EI : kaI kdI
EI <==> EI* : kif kib

...
[data]

sheet ./manual/data/monitor/data/sheet.txt
offset -1
monitor E, ES, EI, EI*

column 5 | conc I = 4
column 6 | conc I = 8
column 7 | conc I = 16
column 8 | conc I = 32
column 9 | conc I = 64

In this particular example DynaFit was used to fit a set of reaction progress curves
describing the inhibition of 5al pha-ketosteroid reductase by the drug finasteride.
The experimental data are from ref. [11]. The inhibition mechanism involves an
initial binding of inhibitor followed by a reversible isomerization of the enzyme–
inhibitor complex. The overlay of the experimental data and the best-fit model
curves is shown in the left hand panel of Figure 7.8.
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Fig. 7.8: Left: Data and best-fit model overlay. Right: Concentration plot corre-
sponding to the [I] = 4 nM model curve in the left-hand panel generated by the
use of the keyword monitor. See Listing 7.9 and ref. [11].

The notation monitor E, ES, EI, EI* signifies that for each reaction
progress curve we asked DynaFit to produce a plot of the concentration of molecular
species E (the free enzyme), ES (the Michaelis complex), EI (the initial enzyme–
inhibitor complex) and EI* (the final, isomerized complex). Because there are five
reaction progress curves being analyzed, DynaFit generated five sets of concentra-
tion plots. One of those plots, corresponding to the lowest inhibitor concentration
([I] = 4 nM) is shown in the right-hand panel of Figure 7.8. Additional concentra-
tion plots (not shown) were automatically generated by DynaFit for the remaining
inhibitor concentrations shown in Listing 7.9.

7.11.6 Arbitrary interpolation mesh

This mesh keyword is also available in data fitting projects, not only in heuristic
simulations. DynaFit always chooses a certain particular interpolation mesh for the
model curves superimposed on the fitted experimental data. However, in certain
specific instances we might wish to override the default spacing and the extent of
the best-fit model curve. In that case we can use the keyword mesh to specify the
values of independent variable that should be used for the construction of the best-fit
model curves. The generalized notation is shown below:

[task]
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task = fit
...
[data]

mesh from X to Y step Z ; best-fit model curve

A very similar notation can be used for logarithmically spaced model curves
(mesh logarithmic) generated in data fitting projects.

7.12 Preprocessing

This section describes two methods that can be used to pre-process raw experimental
data, which are physically represented as external disk files. Both of these methods
arose in the analysis of the reaction progress curves, in particular in the analysis of
stopped-flow rapid kinetic data.

7.12.1 Maximum reaction time

The first method (relying on the keyword maximum) can be used to edit out “late”
portions of kinetic traces selectively and separately for individual data files being
subjected to global regression analysis.

An introductory example will help illuminate the motivation. Let us assume the
existence of two data files named F1.TXT and F2.TXT, respectively. Both data files
contain readings of fluorescence recorded over time, from time zero to the maximum
time of 10 seconds. Now let us assume that we wish to analyze on the first first two
seconds from file F1.TXT and the first five seconds from file F2.TXT. This can be
accomplished as shown in the listing immediately below:

Example 1

[task]
task = fit
data = progress

[data]
maximum 2.0 ; delete data points at t > 2.0 sec
file F1.TXT

maximum 5.0 ; delete data points at t > 5.0 sec
file F2.TXT

The maximum keyword will apply to all data files that follow, until either another
maximum values is listed in the [data] section of the script, or until the special
value maximum off is found:
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Example 2

[task]
task = fit
data = progress

[data]
maximum 2.0 ; delete t > 2.0 in files F1, F2, F3
file F1.TXT
file F2.TXT
file F3.TXT

maximum 5.0 ; delete t > 5.0 in files F4, F5, F6
file F4.TXT
file F5.TXT
file F6.TXT

maximum off ; no data deletion in files F7, F8, F9
file F7.TXT
file F8.TXT
file F9.TXT

7.12.2 Additive constant

The keyword shift can be used to introduce spacing between plots of individ-
ual progress curve data sets being analyzed in a global fashion. Consider the fol-
lowing illustrative example. Let us assume that we wish to perform a global fit of
seven reaction progress curves, represented as columns number 2 through 8 in the
comma-separated spread sheet file N4.csv. The usual coding to accomplish this task
is shown in the listing immediately below (Example 1). The corresponding graph is
shown in Figure 7.9.

Example 1

...
[data]

directory ./test/_temp/data
plot logarithmic
maximum 0.5
sheet N4.csv
column 2 | offset auto ? | conc N = 250 | label 0.25 mM
column 3 | offset auto ? | conc N = 500 | label 0.5 mM
column 4 | offset auto ? | conc N = 1000 | label 1 mM
column 5 | offset auto ? | conc N = 2000 | label 2 mM
column 6 | offset auto ? | conc N = 4000 | label 4 mM
column 7 | offset auto ? | conc N = 6000 | label 6 mM
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column 8 | offset auto ? | conc N = 8000 | label 8 mM
...

0.25 mM
0.5 mM
1 mM
2 mM
4 mM
6 mM
8 mM

0.01 0.1

0
20

40
60

time, s

∆A
34

0,
 m

O
D

re
si

du
al

s

-0
.5

0
0.

5

Fig. 7.9: Example of global fit. Note the inconvenient overlap of several kinetic
traces, which make the resulting graph largely “unreadable”.

The keyword shift can be used to add a fixed constant to all experimental
signal values, separately for each kinetic trace, such that the overlap of traces in
Figure 7.9 is eliminated. The requisite listing is shown in listing Example 2 below.
Here we have added the absorbance value “1” to all data in column no. 3, absorbance
value “2” to all data in column no. 4, and so on. The resulting graph is shown in
Figure 7.10.

Example 2
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...
[data]

directory ./test/_temp/data
plot logarithmic
maximum 0.5
sheet N4.csv
shift 0 | column 2 | offset auto ? | conc N = 250 | label 0.25 mM
shift 1 | column 3 | offset auto ? | conc N = 500 | label 0.5 mM
shift 2 | column 4 | offset auto ? | conc N = 1000 | label 1 mM
shift 4 | column 5 | offset auto ? | conc N = 2000 | label 2 mM
shift 12 | column 6 | offset auto ? | conc N = 4000 | label 4 mM
shift 20 | column 7 | offset auto ? | conc N = 6000 | label 6 mM
shift 28 | column 8 | offset auto ? | conc N = 8000 | label 8 mM

...

0.25 mM
0.5 mM
1 mM
2 mM
4 mM
6 mM
8 mM

0.01 0.1

0
20

40
60

80

time, s

∆A
34

0,
 m

O
D

re
si

du
al

s

-0
.5

0
0.

5

Fig. 7.10: Example of global fit after applying the keyword shift selectively to
each progress curve (compare with Figure 7.9).
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The data traces shown in Figure 7.10 are much easier to follow and understand
visually. The results of fit are unaffected by shifting the kinetic traces on the verti-
cal (signal) axis, because the offset on the signal axis (keyword offset) is being
optimized in the nonlinear least-squares regression.
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Chapter 8
Output files and directories

The [output] section of each DynaFit script tells the program where to deposit
the various types of output files automatically produced by during its execution. This
is arranged by the use of the keyword directory. The general pattern is shown
in the code fragment below.

[output]
directory DIRECTORY_NAME

In this code fragment, DIRECTORY_NAME is a place holder for the path name
of the output directory to be utilized by DynaFit. If the directory does not exist, it
will be automatically created. If the directory does exist, the output files located in it
during previous program executions will be automatically rewritten. The directory
name could be an absolute path or a relative path; please consult section 7.2.1 for
the detailed discussion of relative vs. absolute path names.

8.1 Output file types

When DynaFit runs, it automatically generates three types of output files:

• Plain text. These tab-delimited text files are written into a special subdirectory
named txt, which is automatically created in the main output directory. The text
files are very useful for importation into software packages that specialize in
publication-quality graphics, such as SigmaPlot or GraphPad.

• GIF images. The GIF image files are written into a subdirectory gif, which
is also automatically created. The GIF files serve mainly to display the results
within the HTML output files (see below).

• HTML files. When DynaFit executes it creates a variety of interlinked HTML
files, starting from the file named index.html located in the root of the main
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output directory. The remaining HTML files are written into a newly created
subdirectory htm.

8.2 Initial rate file

DynaFit can be used for convenient automation of a two-stage kinetic analysis pro-
cedure. In the first stage, DynaFit will determine the initial reaction rates of enzy-
matic assays analyzed individually (in “local” mode as opposed to globally [1]). The
initial reaction rates are written to a disk file, along with the associated concentra-
tion of a variable reactant, such as the substrate or the inhibitor. The location of this
newly created data file is specified by the keyword rate-file, as is shown in the
code fragment below.

[output]
rate-file FILE_NAME

The advantage of this method of determining initial rates is that the fitting model,
formulated as a system of differential equations, can be as complex as necessary to
account for any possible nonlinearities. In the second stage, DynaFit then proceeds
to analyze the newly (and fully automatically) created initial rate data file, again
using the familiar symbolic notation.

For a complete working example, see the script file 01.txtlocated in the directory
./manual/data/rates distributed with the program. The script file is displayed in
full in Listing 8.1.EXAMPLE SCRIPT

Listing 8.1

; -----------------------------------------------------------
; Part 1: determine initial rates and write them to the disk.
; -----------------------------------------------------------

[task]
data = progress
task = fit

[mechanism]
E + S <===> ES : kaS kdS
ES ----> E + P : kdP
I --> : dummy

[constants]
kaS = 1, kdS = 2 ?
kdP = 1 ?
dummy = 1

[concentrations]
S = 31
E = 0.05
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[responses]
P = 3.21

[data]
sheet ./manual/data/rate/data/sheet.txt

column 2 | offset -1 ? | conc I = 0

[output]
directory ./manual/data/rate/output/01
rate-file ./manual/data/rate/data/rates.txt

[settings]
{Filter}

XMax = 900
TimeInitialRate = 1

[task] | data = progress | task = fit
[data] | column 3 | offset -1 ? | conc I = 1

[task] | data = progress | task = fit
[data] | column 4 | offset -1 ? | conc I = 2

[task] | data = progress | task = fit
[data] | column 5 | offset -1 ? | conc I = 4

[task] | data = progress | task = fit
[data] | column 6 | offset -1 ? | conc I = 8

[task] | data = progress | task = fit
[data] | column 7 | offset -1 ? | conc I = 32

[task] | data = progress | task = fit
[data] | column 8 | offset -1 ? | conc I = 64

[task] | data = progress | task = fit
[data] | column 9 | offset -1 ? | conc I = 128

; -----------------------------------------------------------
; Part 2: fit the initial rates to the simplest binding model.
; -----------------------------------------------------------

[task]
data = equilibria
task = fit

[mechanism]
E + I <==> EI : Ki dissoc

[constants]
Ki = 0.1 ??

[concentrations]
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E = 0.05

[responses]
E = 20 ?

[data]
variable I
file ./manual/data/rate/data/rates.txt

[end]

The example problem shown in Listing 8.1 utilizes the same 5α-reductase experi-
mental data [2] that were discussed previously in section 7.11.5. Please note the uses
of the notation rate-file .../data/rates.txt. This DynaFit encoding
is responsible for the automatic creation of the initial rate data set. In the final task
(data = equilibria) the initial rates are fit to the simple 1:1 enzyme:inhibitor
binding model under rapid-equilibrium approximation. The results are summarized
graphically in Figure 8.1.

Fig. 8.1: Left: “Local” fit of reaction progress curves to determine the initial reaction
rates. Right: Fit of the automatically created initial rate dataset to the simplest 1:1
binding model. See Listing 8.1 and ref. [2].
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Chapter 9
Initialization and control settings

This chapter describes the master configuration file that sets up default control pa-
rameters for many algorithms implemented in DynaFit. It also describes how to
override these default control settings in script files.

9.1 Default initialization file

When DynaFit starts up, it reads the default configuration file named ./system/DynaFit/settings.txt,
where “.” stands for the DynaFit installation directory. This configuration file con-
tains many parameters for a number of numerical algorithms implemented in Dy-
naFit. The entire default initialization file is shown in Listing 9.1.

Listing 9.1

{DynaFit}
RandomizationSeed = 4357 ; | 0 for system time
DefaultFittingAlgorithm = trust-region ; | marquardt
PointsParametersRatio = 10

{ODESolver}
Iterations = 1000
AbsoluteError = 1.e-14
RelativeError = 1.e-8

{TrustRegion}
IterationsPerParameter = 100
FunctionCallsPerParameter = 200
ConstrainedFit = y
RobustFit = n
EqualizeDatasets = n

{Marquardt}
IterationsPerParameter = 100
RestartPerturbation = 0.1
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Restarts = 2
RestartsConfidence = 1
RobustFit = n
EqualizeDatasets = n
FixRedundantParameters = y

{ConfidenceIntervals}
LevelPercent = 95
OnlyConstants = y
JointProbability = n
MaxSteps = 30
SquaresIncreasePercent = 0 ; | 10 for continuous assays

{DifferentialEvolution}
PopulationSizeFixed = 0
PopulationSizeMinimal = 300
PopulationSizePerParameter = 5
PopulationSizePerOrderOfMag = 3
MinimumGenerationsPerParameter = 5
MaximumGenerationsPerParameter = 100
MaximumEvolutions = 6
MinimumEvolutions = 4
RandomSeed = 1234
RootMeanSquareMin = 0
RootMeanSquareMax = 0
OutputTextFileType = csv ; | txt

{Constraints}
Constants = 1000000
Responses = 1000000
Concentrations = 1000
AllParametersConstrained = y
AllParametersRelativeBound = 1000000

{Filter}
XMin = 0
XMax = 0
XShift = 0
XFirstMesh = 0
YMin = 0
YMax = 0
PointsPerDataset = 0
ExponentialSpacing = n
ReadEveryNthPoint = 0
SkipFirstNPoints = 0
TimeInitialRate = 1
PrintInitialRate = y
SmoothData = n
SmoothingMethod = savitzky-golay ; | average
SavitzkyGolayWindow = 10
SavitzkyGolayDegree = 4
ExtrapolationMethod = quadratic ; | linear
SmoothingPasses = 4
AverageReplicates = n
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ZeroBaselineSignal = n

{PieceWiseLinearFit}
Points = 0
Segments = 4
Time = 0
Overlap = n

{Output}
UseDefaultDirectory = y
Autocorrelations = n
ConfidenceBands = n
PredictionBands = n
WriteTXT = n
WriteEPS = n
ColorEPS = y
ResidualsEPS = y
WriteTeX = n
XAxisUnit =
XAxisLabel =
YAxisLabel =
BlackBackground = y
IncludeXZero = n
IncludeYZero = n
InitialRateDigits = 4
StartDefaultBrowser = n
PlotRatesLogarithmic = n
PlotStateLogarithmic = n
SignificantDigits = 2
ResidualRange = 0

{MonteCarlo}
PerformInitialFit = y
Runs = 1000
RandomizationMethod = simulate ; | shuffle | shift
Distribution = normal ; | cauchy | logistic | uniform
StandardDeviationSource = fit ; | data | explicit
StandardDeviation = 1.2
SignificantDigits = 4
HistogramBuckets = 20
TruncateMeanPercent = 5
ColorOutput = y
RandomizationSeed = 1267
ConcentrationErrorPercent = 0
OriginalEstimates = n
ConfidenceLevel = 100

{EstimateScan}
ReportSizeMax = 1000
RefineEstimates = 10

{ExponentialFit}
Degree = 4
Automatic = y
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AllowOscillations = n
TinyAmplitudes = 0 ; | 0.000001
RefineMarquardt = n

{OptimalDesign}
Algorithm = AS ; | DE | BFGS
Function = D ; | T | E | V

{ModelSelection}
PrioritizeCriterion = akaike ; | bayesian
ConfidenceIntervalRangeMax = 10000
CoefficientOfVariationMax = 200
InformationCriterionDeltaMax = 10
InformationCriterionWeightMin = 0.01
RelativeSquaresMax = 1.05

It is not recommended that the users modify these default settings by altering the
default initialization file, unless there are very compelling reasons to do so and the
particular user understands perfectly well any possible adverse consequences. For
example, changing the truncation error tolerances of the ODE solvers (keywords
AbsoluteError and RelativeError in section ODESolver) should be un-
dertaken only with extreme care and only after first studying thoroughly how does
any such change affect the overall numerical precision differential-equation model-
ing.

9.2 Overriding default initialization

Instead of making any changes in the default initialization file ./system/DynaFit/settings.txt,
it is preferable that if necessary the user overrides the default settings by inserting a
special section into a particular script file, as is shown in the code fragment below.

[settings]
...
... OVERRIDE DEFAULT SETTINGS HERE
...

The [settings] section, if any is present, applies to the [task] block in
which it is embedded, and also to all subsequent tasks – unless or until another
[settings] section is found further down in the given script file. For exam-
ple in Listing 9.2, the contents of the [settings] section will apply to all three
[task] sections contained in the given script file.

Listing 9.2

[task] ; #1
...
[settings]
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...

... These settings will apply to all tasks: #1, #2, #3

...
[task] ; #2
...
[task] ; #3
...
[end]

In contrast, Listing 9.3 illustrates how the default DynaFit settings could be mod-
ified selectively for individual tasks.

Listing 9.3

[task] ; #1
...
[settings]

...

... These settings will apply to tasks #1, #2

...
[task] ; #2
...
[task] ; #3
...
[settings]

...

... These settings will apply to task #3 only

...
[end]

9.3 DynaFit control settings

The purpose of this section is to discuss selectively those elements of DynaFit con-
trol settings that are likely to be useful to the casual user, i.e., one who is not thor-
oughly familiar with the intricate details of advanced numerical algorithms. A thor-
ough discussion of these advanced techniques is reserved for the separate Volume 3
of the DynaFit Manual.

9.3.1 Overall settings for DynaFit

The following control settings apply to the DynaFit software package as a whole,
regardless of which particular algorithm is utilized for any specific task:

{DynaFit}
RandomizationSeed = 4357 ; | 0 for system time
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DefaultFittingAlgorithm = trust-region ; | marquardt
PointsParametersRatio = 10

9.3.1.1 Random number generator

The pseudo-random number generator employed in DynaFit is essentially the Mersenne
Twister algorithm of Matsumoto and Nishimura [25]. The initialization code listed
below can be used to set the randomization seed.

[settings]
{DynaFit}

...
RandomizationSeed = 4357 ; | 0 for system time

If RandomizationSeed is set to zero the sequence of pseudo-random num-
bers will be different every time DynaFit runs. This is useful in certain special cases,
for example in performing Monte-Carlo simulations on a multi-processor computer
running several images of DynaFit simultaneously, with the goal of eventually merg-
ing the results. With nonzero randomization seed all instances of DynaFit running
in parallel would produce identical Monte-Carlo results.

9.3.1.2 Default least squarer fitting algorithm

For most data-fitting tasks, DynaFit uses one of two most well known and under-
stood nonlinear least-squares fitting algorithms:

1. The Levenberg-Marquardt method [22] as implemented by Reich [30].
2. The trust-region method (algorithm NL2SOL) of Dennis et al. [8, 9, 10].

The initialization file settings.txt contains the following code allowing the user
to select which of the two least-squares fitters should be used:

[settings]
{DynaFit}

...
DefaultFittingAlgorithm = trust-region ; | marquardt

The notation marquardt can be replaced by levenberg-marquardt.
The default algorithm can be overridden in the [task] section of the script, as
is described in section 2.4. For example, even if the initialization file contains
DefaultFittingAlgorithm = trust-region, setting algorithm =
LM in the [task] section will force DynaFit to utilize the Levenberg-Marquardt
method for the given task.
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9.3.1.3 Number of data points vs. optimized parameters

The following control parameter has been newly introduced in DynaFit version 4.08,
released in March 2018:

[settings]
{DynaFit}
...

PointsParametersRatio = 10

This notation is applicable to continuous reaction progress experiments, for ex-
ample, those arising in continuous enzyme assays. One important data-analytic chal-
lenge in the case of continuous assays is that the experimental data points are not
statistically independent, and therefore the formal standard errors (SE) arising in
nonlinear least-squares regression are essentially irrelevant and numerically invalid.
The same is true for the coefficients of variation defined as

CV = 100
SE
p̂

,

where p̂ is the best-fit value of the relevant regression parameter. In an attempt
to provide at least a somewhat meaningful value of CV for continuous assays, if
PointsParametersRatio is set to a value grater than unity, DynaFit will com-
pute and report an “empirical” coefficient of variation.

Let nP be the number of adjustable model parameters; nD the number of experi-
mental data points; and R the numerical value of the control parameter PointsParametersRatio.
If the ratio R is defined with a value R > 1 in the control settings file, and if
nD/nP > R, the “empirical” coefficient of variation (CVe) will be reported in the
nonlinear regression results as

CVe =CV

√
nD/nP−1

R−1
= 100

SE
p̂

√
nD/nP−1

R−1
.

In all relevant cases, the best-fit parameter table reported by DynaFit will contain
a notation alerting the data analyst that all CV values were “inflated” accordingly.
Note that the formal standard error SE in the case of continuous assays will still be
reported as the (numerically invalid and therefore irrelevant) nominal value.

9.3.2 ODE Solver

The following initialization code controls the settings for the LSODE solver [16]
of first-order Ordinary Differential Equations (ODEs), which is the numerical algo-
rithm at the core of the DynaFit numerical engine.

{ODESolver}
Iterations = 5000
AbsoluteError = 1.e-15
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RelativeError = 1.e-9

These control settings for the LSODE algorithm can be understood by care-
fully studying the original Fortran-77 code available from the NETLIB repository
(http://www.netlib.org). A brief explanation is provided in Table 9.1.

Parameter Default Explanation

Iterations 5000 Number of corrector iterations in the predictor-
corrector numerical algorithm for stiff systems of
ODEs [16, 7]

AbsoluteError 10−15 Desired absolute precision of the numerical solution
RelativeError 10−9 Desired relative precision of the numerical solution (9

significant digits)

Table 9.1: Control settings for the ODE solver.

It is highly recommended that the casual user does not modify these settings for
the ODE solver. Relaxing the stringent criteria for absolute and relative precision
of the numerical solution could result in loss of precision in the best-fit values of
model parameters such as rate constants.

The error weights in the original LSODE algorithm (see subroutine EWSET) are
set according to Eqn (9.1), where yi is the ith element of the solution vector; ri is the
requested relative precision for this element; and ai is the corresponding absolute
precision.

wi = ri|yi|+ai (9.1)

The existence of the absolute error term ai in Eqn (9.1) implies that it is very
important to properly scale all concentrations on input, such that their absolute
numerical values are as close to unity as possible. For example in the study of
enzyme inhibition, if all inhibitor concentration are in the nanomolar range (absolute
value 10−9) then all input concentrations and rate or equilibrium constants should
be scaled to nanomolar units.

9.3.3 Trust region least-squares fitter

The following initialization code controls the settings for the hybrid lest-squares
minimization algorithm (NL2SOL version 2.3, released July 2015) originally de-
scribed by Dennis et al. [8, 9, 10].

{TrustRegion}
IterationsPerParameter = 100
FunctionCallsPerParameter = 200
ConstrainedFit = y
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RobustFit = n
EqualizeDatasets = n

The control parameters IterationsPerParameter and FunctionCallsPerParameter
are self-explanatory. For details, see the documentation for the software package
NL2SOL 2.3.

The meaning of the control parameters RobustFit and EqualizeDatasets
is the same as is described in section 9.3.4. The control parameter ConstrainedFit
(possible values y for “Yes” or n for “No”) determines whether NL2SOL should use
a specialized version with parameter bounds.

9.3.4 Levenberg-Marquardt least-squares fitter

The following initialization code controls the settings for Reich’s implementation
[30] of the Levenberg-Marquardt [22] lest-squares minimization algorithm.

{Marquardt}
IterationsPerParameter = 100
RestartPerturbation = 0.1
Restarts = 2
RestartsConfidence = 1
RobustFit = n
EqualizeDatasets = n
FixRedundantParameters = y

A brief explanation is provided in Table 9.2. Please note that in the DynaFit
settings file, the Boolean value n stands for “no”, whereas the value y stands for
“yes”.

9.3.4.1 Number of iterations

By default DynaFit will perform at most 100 times as many iterations as there are
adjustable model parameters. This is signified by the following initialization code:

[settings]
{Marquardt}

IterationsPerParameter = 100

For exceptionally ill-conditioned (i.e., overparametrized) problems one might at-
tempt to reach convergence by increasing the maximum number of iterations even
further. However, a much preferable solution is to either modify the fitting model
such that all adjustable parameters are well defined by the available experimental
data, or to obtain additional experimental data that do support all adjustable model
parameters in the postulated fitting model.
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Parameter Default Explanation

IterationsPerParameter 100 Number of Levenberg-Marquardt iterations per ad-
justable parameter

Restarts 2 Number of restarts after the presumed least-squares
minimum has been reached

RestartsConfidence 2 Number of restarts in each step of a confidence inter-
val search using the profile-t method [33])

RestartPerturbation 0.1 Maximum random fractional change in each ad-
justable model parameter upon restarting

RobustFit n Whether or not DynaFit should perform robust re-
gression analysis using Huber’s Mini-Max method
[17] instead of the default ordinary least squares
(OLS)

EqualizeDatasets n Whether or not DynaFit should perform data set
equalization.

FixRedundantParameters n Whether or not DynaFit should automatically remove
a completely redundant parameter from the fitting
model.

Table 9.2: Control settings for the least-squares fitter.

9.3.4.2 Number of restarts

Authoritative textbooks on nonlinear regression analysis [31, p. 611] recommend
periodically restarting the search for least-squares minimum. By default DynaFit
will restart twice (Restarts = 2) after presumably converging to the least-
squares minimum, each time altering all model parameters by a certain frac-
tional perturbation RestartPerturbation = 0.1. During confidence inter-
val searches using the profile-t method (see below) DynaFit will restart only once
(RestartsConfidence = 1) at each step of the confidence interval search.

For particularly well behaved problems it might be possible to turn off restarts by
setting Restarts = 0, in order to gain a small amount of computational speed.
However practical experience shows that if the problem is truly well behaved the
savings of time are negligibly small whereas if the problem is ill-conditioned there
is a significant risk of landing in a false minimum with restarts turned off.

9.3.4.3 Robust regression analysis

By default DynaFit performs the usual Ordinary Least-Squares (OLS) fit [30]. The
following initialization code can be used to accomplish robust regression using Hu-
ber’s Mini-Max algorithm [17].

[settings]
{Marquardt}

RobustFit = y
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Huber’s algorithm is one particular example of the Iteratively Re-weighted Least
Squares method (IRLS). The main advantage of Huber’s robust regression method
is that any gross outliers in the experimental data are automatically de-emphasized
or, in extreme cases, essentially eliminated by setting their least-squares regression
weights to nearly zero.

This algorithm is most useful in fully automated or “unattended” processing of
very many data sets arising, for example, in high-throughput screening of enzyme
inhibitors [20]. In other contexts, especially in model discrimination studies, the
casual user should exercise great amount of caution in interpreting the results from
robust-regression analysis. In particular, IRLS vs. the usual OLS analysis affects
the meaning of the Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) [26, 27].

9.3.4.4 “Equalization” of data sets

In certain cases we might wish to perform the global fit [3] of multiple data sets that
contain vastly disparate number of data points. For example, a stopped-flow kinetic
trace might contain 2000 of data points, whereas another kinetic trace included in
the global set might contain only 50 data points. Without taking extra steps the
kinetic trace with 2000 data points would dominate the regression analysis simply
on account of containing 40 times as many data points. The code snippet listed
below could be used to “equalize” the regression weights such that all individual
data sets included in the global fit have the same weight.

[settings]
{Marquardt}

EqualizeDatasets = y

9.3.4.5 Elimination of redundant model parameters

By default, DynaFit will automatically eliminate from the given regression model
any adjustable model parameter that are entirely redundant, in the sense that the
there is absolutely no information about the possible values of the parameter in the
given set of experimental data. Such gross over-parameterization can result from
incorrectly including an extraneous step in the reaction mechanism, in which case
DynaFit will automatically treat the requisite rate constants as fixed as opposed to
adjustable, regardless of the users intentions. This behavior can be turned off by
inserting the following code into the DynaFit script.

[settings]
{Marquardt}

FixRedundantParameters = n
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With this initialization, if or when DynaFit encounters an entirely redundant
model parameter it will issue a runtime error and the regression analysis will not
proceed any further.

9.3.5 Confidence intervals: Profile-t method

The following block of initialization code controls the behavior of the profile-t
method for confidence interval estimation described by Bates & Watts [2, pp. 205-
216, 302-304] [33, 4]. A brief explanation is provided in Table 9.3.

{ConfidenceIntervals}
LevelPercent = 95
OnlyConstants = y
JointProbability = n
MaxSteps = 30
SquaresIncreasePercent = 0 ; | 10 for continuous assays
MaxRefitIterations = 2
RefitImprovedLower = y
RefitImprovedHigher = n

Parameter Default Explanation

LevelPercent 95 Desired probability level (%) for the confidence inter-
vals

OnlyConstants y Whether to exclude “nuisance” parameters from
least-squares optimization while searching for confi-
dence limits of rate constants or equilibrium constants

JointProbability n Whether to compute the limits of a joint confidence
region (y) or the limits of the marginal confidence in-
terval (n)

MaxSteps 30 Maximum steps to be taken in the profile-t search al-
gorithm

SquaresIncreasePercent 0 Desired increase in the residual sum of squares
MaxRefitIterations 2 If greater than zero, data fitting with restart from an

improved estimate discovered during a confidence in-
terval search

RefitImprovedLower y Restart according to MaxRefitIterations will
occur if the newly discovered optimal value of a fit-
ting parameter is lower than the initial “best-fit” value

RefitImprovedHigher n Restart according to MaxRefitIterations will
occur if the newly discovered optimal value of a
fitting parameter is higher than the initial “best-fit”
value

Table 9.3: Control settings for the profile-t confidence interval search algorithm
[33].
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9.3.5.1 Desired confidence level

By default DynaFit will search for the limits of the non-symmetrical confidence
intervals at the 95% probability level:

[settings]
{ConfidenceIntervals}

LevelPercent = 95

Other commonly utilized confidence levels are 99% or 90%, depending on the
application area. The higher the required confidence level, the wider the confidence
intervals. In extreme cases of only very small number of experimental data points
being available the confidence interval might be half-opened or even fully opened
at 99% or 95% confidence levels. In those specific cases the 90% level interval is
probably preferable.

9.3.5.2 Including or excluding “nuisance” parameters

In applied statistics, the term “nuisance parameter” refers to an adjustable parameter
in the given regression model that is less important or interesting compared to cer-
tain other regression parameters. For example, in fitting enzymatic reaction progress
curves to Eqn 6.1, the instrument baseline parameter F0 must often be treated as an
adjustable model parameter in order to achieve a satisfactory goodness of fit. At
the same time, we are not really interested at all in the best-fit value of F0, because
it is a property of the instrument, not a property of the biochemical system under
investigation.

DynaFit has the ability to turn off the optimization of “nuisance” parameters,
such as instrument baselines, initial concentrations of reactants, or molar response
coefficients, during the confidence interval search for rate constants and equilibrium
constants. This is arranged by the default setting:

[settings]
{ConfidenceIntervals}

OnlyConstants = y

It is very important to realize that with these settings the reported confidence
interval is merely a projection in the multi-dimensional parameter space, whereby
all “nuisance” parameters are held fixed at their best-fit values and only rate con-
stants or equilibrium constants are subjected to least-squares optimization. There-
fore the reported confidence interval limits are always narrower (i.e., more “opti-
mistic”) compared to the scenario where “nuisance” parameters are allowed to float
during the confidence interval search (OnlyConstants = n).
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9.3.5.3 Joint inference regions or marginal confidence intervals

The value of the control parameter JointProbability (y or n) determines
which type of confidence interval will be computed by DynaFit. There are two
choices, both of which are explained in detail in ref. [33].

[settings]
{ConfidenceIntervals}

JointProbability = n ; | y

The default choice is the limits of the marginal confidence interval defined by
Eqn (9.2), where St is the maximum allowed value of the sum of squares at either
end of the confidence interval; S(θ̂) is the sum of squares value for the optimal or
“best-fit” parameter vector θ̂ ; N is the number of experimental data points; P is
the number of optimized model parameters; and t2(N−P;α/2) is the “value that
isolates an area α /2 under the fight tail of the Student’s t distribution with N−P
degrees of freedom” [33].

St ≤ S(θ̂)
[

1+
t2(N−P;α/2)

N−P

]
(9.2)

The marginal confidence interval limits for a particular model parameter are com-
puted under the assumption that the “true” values of the remaining parameters are
equal to their best-fit values as determined by the least-squares estimate.

Under the alternate settings (JointProbability = y) DynaFit will com-
pute the limits of the joint confidence region defined by Eqn (9.3), where F(P;N−
P;α) is the “value which isolates an area α under the right tail of Fisher’s F distri-
bution with P and N−P degrees of freedom” [33].

SF ≤ S(θ̂)
[

1+
P

N−P
F(P;N−P;α)

]
(9.3)

Joint confidence regions are always wider (less “optimistic” but in some sense
probably more “realistic”) than the corresponding marginal confidence intervals.
The choice of the given type of confidence interval, joint or marginal, will depend
on the particular problem under investigation.

9.3.5.4 Increase in the residual sum of squares

The profile-t method for confidence interval estimation [2] assumes that each indi-
vidual data point is statistically independent. However, in many types of experiments
this requirement is not satisfied. For example in continuous enzyme assays we often
collect hundreds or even thousands of measurements while following changes in
some physical quantity (fluorescence or absorbance) over time.

One very important point to emphasize is that in similar “continuous” exper-
iments the individual data points are not statistically independent, but rather are
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strongly statistically correlated. Johnson et al. [19, 18] proposed an empirical work-
around, by requiring that the confidence interval limits are defined an arbitrary in-
crease in the residual sum of squares. The desired level of increase is defined by the
following control parameter:

[settings]
{ConfidenceIntervals}

SquaresIncreasePercent = 0 ; | 10 for continuous assays

Johnson et al. [19, 18] recommended a 10% or 25% increase as a suitable target
value for confidence interval estimation in the analysis of “continuous” experiments.
Our experience shows that either 5% or 10% increase is also suitable.

The importance of this particular control parameter cannot be overstated. It is
imperative that DynaFit users always utilize at least 5%, but preferably 10%,
increase in the sum of squares in the analysis of all “continuous” experimental
data.

9.3.5.5 Restart of data fitting (false minimum)

{ConfidenceIntervals}
MaxRefitIterations = 2
RefitImprovedLower = y
RefitImprovedHigher = n

In certain exceptionally difficult cases, depending on the initial estimate of model
parameters, the initial least-squares fit fails to locate the global minimum on the
least-squares hyper-surface. In those unfavorable cases, the systematic confidence
interval search might a best-fit value of the residual sum of squares that is lower
(“better”) than the SSQ value discovered by the initial fit.

If a lower (“better”) value of the residual sum of squares is in fact discovered dur-
ing the confidence interval search, the control parameter MaxRefitIterations
determines whether or not an attempt should be made to restart the entire least-
squares minimization, including a subsequent confidence interval search, from the
improved estimate of model parameters. If MaxRefitIterations = 0, no
restart will ensue. The default value is “2”, based on practical experience show-
ing that the restart might be repeated more than once to successfully locate the true
global minimum.

The control parameter RefitImprovedLower enables the restart if and when
the improved (in terms of the associated SSQ) value of the given parameter of in-
terest is lower than the initially identified “best-fit” value. Conversely, the control
parameter RefitImprovedLower enables the restart if and when the improved
value of the given parameter of interest is higher than the initially identified “best-
fit” value.
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The choice of the default values shown above (RefitImprovedLower = y,
RefitImprovedHigher = n) is informed by practical experience. In particu-
lar, DynaFit is often utilized to determine the best-fit values of dissociation rate con-
stants or dissociation equilibrium constants. Experience shows that repeated restarts
of the least-squares minimization algorithm is not productive when, in fact, the dis-
sociation constant essentially tends to infinity, signifying that the associated reaction
step is in fact missing from the postulated reaction mechanism.

9.3.6 The Differential Evolution (DE) algorithm

The Differential Evolution (DE) algorithm [29] is an evolutionary strategy (ES)
computational approach aimed at finding global optima of various types. Within
DynaFit, the DE algorithm is used either for least squares data fitting (i.e., minimiz-
ing the residual sum of squares) or for the D-optimal [1] design of experiments (i.e.,
maximizing the determinant of the Fisher information matrix).

The operations of the DE algorithm are controlled by the following set of control
parameters. A brief description of each parameter is shown in Table 9.4.

{DifferentialEvolution}
PopulationSizeFixed = 0
PopulationSizeMinimal = 300
PopulationSizePerParameter = 5
PopulationSizePerOrderOfMag = 3
MinimumGenerationsPerParameter = 5
MaximumGenerationsPerParameter = 100
MaximumEvolutions = 4
MinimumEvolutions = 1
RandomSeed = 1234
RootMeanSquareMin = 0
RootMeanSquareMax = 0
OutputTextFileType = csv ; | txt

Space constraints do not permit a detailed, in-depth explanation of the basic prin-
ciples underlying the DE algorithm. The reader is encouraged to consult the original
source [29].

Briefly, if p f is set to any positive value, then DynaFit uses that particular pop-
ulation size and the control parameters pm, pp, and po are ignored. Otherwise the
population size is set to pm +N × pp +M× po, where N is the number of opti-
mized model parameters and M is sum total of the orders magnitude spanned by the
optimized parameter ranges.

Each evolutionary sequence is terminated either when convergence is reached (a
suitable set of convergence criteria will described in a forthcoming publication) or
when then the generation count reaches N× gmax. However the evolutionary cycle
will proceed at least N×gmin regardless of convergence criteria.

DynaFit will simulate at least emin +1 separate evolutions and compare the final
results. If the final (presumably, globally optimal) sets of model parameters agree to
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Parameter Default Explanation

PopulationSizeFixed 0 = p f , see comments in text
PopulationSizeMinimal 300 = pm
PopulationSizePerParameter 5 = pp
PopulationSizePerOrderOfMag 3 = po
MinimumGenerationsPerParameter 5 = gmin
MaximumGenerationsPerParameter 100 = gmax
MaximumEvolutions 4 = emax
MinimumEvolutions 1 = emin
RandomSeed 1234 Seed for built-in random number generator
RootMeanSquareMin 0 Stopping criterion for “best” RMS value (rmin)
RootMeanSquareMax 0 Stopping criterion for “worst” RMS value (rmax)
OutputTextFileType csv Text file format for intermediate results

Table 9.4: Control settings for the Differential Evolution algorithm [29].

within 6 significant digits, no further evolutions will be attempted and the program
stops. Otherwise DynaFit will attempt at most emax separate evolutions, trying to
obtain repeatable results.

The DE algorithm should be considered an experimental feature in DynaFit.
Practical experience shows that although the changes of reaching a global minimum
on the least-squares hypersurface are vastly improved when using DE, in compari-
son with the classic Levenberg-Marquardt algorithm [30], global convergence is not
guaranteed.

To utilize DE global minimization instead of the default Levenberg-Marquardt
algorithm, the DynaFit script must contain the algorithm keyword, as follows:

[task]
task = fit
algorithm = differential-evolution ; or algorithm = DE
data = ...

Lastly, it should be noted that in the current implementation the DE algorithm is
excruciatingly slow, requiring typically many hours of computing time on hardware
that is considered “top of the line” at the time of writing, in 2014 (for example, a
3.4 GHz 64-bit multicore microprocessor).

9.3.7 Default parameter constraints

DynaFit implements a very simple version of constrained least-squares minimiza-
tion, following a restart algorithm described by Duggleby [11]. The following block
of initialization code controls how parameter constraints are handled.

{Constraints}
Constants = 1000000
Responses = 1000000
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Concentrations = 1000
AllParametersConstrained = y
AllParametersRelativeBound = 1000000

Parameter Default Explanation

Constants 106 = Bk, see comments in text
Responses 106 = Br
Concentrations 103 = Bc
AllParametersConstrained y Constrained optimization ? (y or n)
AllParametersRelativeBound 106 = Bp

Table 9.5: Control settings for parameter constraints.

All constraint settings (Bk, Br, and Bc in Table 9.5, or Bx in general) must be pos-
itive numbers. Their interpretation depends on whether or not the given constraint
is less or greater than unity.

For constraints that are greater than unity, the bounds for the given parameter are
set from p0× 1/Bx to p0×Bx, where p0 is the initial estimate of the given model
parameter.

For illustration, let us consider the default bounds, Bk = 106, for all rate constants
and equilibrium constants. This means that all optimized rate or equilibrium con-
stants will be allowed to float within 12 orders magnitude. For example, in the spe-
cific case of a particular rate constant, for which the initial estimate is k = 0.123 s−1,
the optimization bounds will range from k− = 1.23×10−7 s−1to k+ = 1.23×10+5

s−1.
For constraints that are smaller than unity, the bounds for the given parameter are

set from p0× (1−Bx) to p0× (1+Bx), where p0 is the initial estimate of the given
model parameter.

For example, if wished to allow all adjustable concentrations to vary only within
a 10% titration error limit, we would include the following initialization code in the
particular DynaFit script:

[settings]
{Constraints}

Concentrations = 0.1 ; = 10% titration error

In the case of algebraic models (data = generic), DynaFit assumes that
all arbitrary algebraic model parameters have relative bounds set from 10−6 fold
to 10+6 fold of the initial estimate. To perform unconstrained optimization, set
AllParametersConstrained = n in the given script file.
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9.3.7.1 Arbitrary parameter constraints

DynaFit can impose any arbitrary constraints on adjustable model parameters. The
appropriate notation is shown schematically below:

P = 1.23 ? (0.45 .. 6.7)

In this code snippet, P is an arbitrary model parameter, such as a rate constant
or equilibrium constant. The value 1.23 is the initial estimate. The question mark
indicates that this parameter indeed should be treated as adjustable in the nonlinear
regression. The 0.45 is the lower limit, and the value 6.7 is the upper limit.

9.3.7.2 Important caveat

It should be noted that the simple restart algorithm for “bouncing off” parameter
bounds, as implemented in DynaFit and in Duggleby’s classic DNRP53 computer
program [11], performs very poorly if the bounds are very narrow. The least-squares
minimization convergence can be very extremely slow and the minimum may not
be found even after very many steps. The Differential Evolution algorithm as im-
plemented in DynaFit is more suitable for handling many narrow parameter con-
straints, but again the convergence is very slow. Efforts are currently under way to
implement a more suitable constrained optimization algorithm based on Quadratic
Programming (QP).

9.3.8 Pre-processing of raw experimental data

DynaFit allows certain types of common preprocessing of raw data sets, such as
selecting only a portion of the complete raw data trace, smoothing, and filtering.
The control parameters are listed below and summarized in Table 9.6.

{Filter}
PointsPerDataset = 0
ExponentialSpacing = n
ReadEveryNthPoint = 0
SkipFirstNPoints = 0
XMin = 0
XMax = 0
XShift = 0
YMin = 0
YMax = 0
XFirstMesh = 0.00001
TimeInitialRate = 1
PrintInitialRate = y
SmoothData = n
SmoothingMethod = savitzky-golay ; | average
SavitzkyGolayWindow = 10
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SavitzkyGolayDegree = 4
ExtrapolationMethod = quadratic ; | linear
SmoothingPasses = 4
AverageReplicates = n
ZeroBaselineSignal = n

9.3.9 Piecewise linear fit

DynaFit can perform a simple piecewise linear fit of the experimental data. To trig-
ger this type of analysis, the DynaFit script must contain the following notation:

[task]
task = fit
data = piecewise-linear

The control settings for the piecewise linear fitting algorithm are shown below.

{PieceWiseLinearFit}
Points = 0
Segments = 4
Time = 0
Overlap = n

If Points is set to a nonzero value, DynaFit will fit this many data points at a
time to the straight-line model. Otherwise if Segments is nonzero, DynaFit will
divide the raw data trace into this many equal-length segments and fit those individ-
ually to the straight-line model. Otherwise if Time is nonzero, DynaFit will divide
the abscissa into segments that have the same duration and fit those segments to
the straight line. If Overlap is set to y, DynaFit will reuse the last data point in a
preceding segment as the starting point in the following segment.

9.3.10 Adjusting output from DynaFit

The user can, to a limited degree, adjust certain aspects of the output produced by
DynaFit. The requisite control parameters are listed below.

{Output}
UseDefaultDirectory = y
Autocorrelations = n
ConfidenceBands = n
PredictionBands = n
WriteTXT = n
WriteEPS = n
ColorEPS = y
ResidualsEPS = y



9.3 DynaFit control settings 147

Parameter Default Explanation

PointsPerDataset 0 If nonzero, the data set will be sampled to contain this
many data points.

ExponentialSpacing n If y, the data set will be sampled to create exponential
(a.k.a. “logarithmic” spacing) of data points.

ReadEveryNthPoint 0 If nonzero, only every nth raw data point will be read
and analyzed.

SkipFirstNPoints 0 If nonzero, this many data points will be deleted from
the start of raw data set.

XMin 0 If nonzero, experimental data up to (and including)
this X-coordinate will be ignored.

XMax 0 If nonzero, experimental data higher than this X-
coordinate will be ignored.

XShift 0 If nonzero, this value will be added to the X-
coordinate of all data points.

YMin 0 If nonzero, experimental data up to (and including)
this Y-coordinate will be ignored.

YMax 0 If nonzero, experimental data higher than this Y-
coordinate will be ignored.

XFirstMesh 0 If nonzero, the model interpolation mesh will be plot-
ted starting from this X-value forward.

TimeInitialRate 0 The “initial” reaction rate will be computed at this
time coordinate.

PrintInitialRate y If y, DynaFit will report “initial” reaction rates in the
output.

SmoothData n If y, DynaFit will perform smoothing of raw data be-
fore the analysis proper.

SmoothingMethod savitzky-golay If savitzky-golay, DynaFit will perform Savitzky-
Golay smoothing using a modification of a familiar
algorithm. [28] If linear, DynaFit will perform a sim-
ple averaging of neighboring data points.

SavitzkyGolayWindow 10 The width of the Savitzky-Golay smoothing window.
SavitzkyGolayDegree 4 Polynomial degree to be used in the Savitzky-Golay

smoothing algorithm.
ExtrapolationMethod quadratic If quadratic, the first and last several data points from

Savitzky-Golay smoothing will be extrapolated using
a quadratic function. Otherwise DynaFit will perform
a linear extrapolation.

SmoothingPasses 4 Number of times the given smoothing algorithm
should be applied.

AverageReplicates n If y, any replicated data points present in the raw data
set will be automatically averaged before analysis.

ZeroBaselineSignal n If y, the Y-coordinate of the first time-point will be
set to zero and the rest of the data set will be adjusted
accordingly.

Table 9.6: Control settings for pre-processing of raw experimental data.

WriteTeX = n
XAxisUnit =
XAxisLabel =
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YAxisLabel =
BlackBackground = y
IncludeXZero = n
IncludeYZero = n
InitialRateDigits = 4
StartDefaultBrowser = n
PlotRatesLogarithmic = n
PlotStateLogarithmic = n
SignificantDigits = 1

Most of the control parameters listed above are self-explanatory.
When IncludeYZero is set to y, DynaFit plots will always include zero on

the Y-axis. Otherwise DynaFit will use an internal “intelligent” algorithm to de-
cide whether the zero point should be included. Similar considerations apply to
IncludeXZero.

The parameter InitialRateDigits sets the number of significant digits in
the automatically generated concentration vs. velocity data files.

The parameter XAxisUnit is used to add a concentration unit to the horizon-
tal axis of graphs generated in the analysis of initial rate or equilibrium binding
data. In those case, DynaFit normally labels the horizontal axis with the reaction
species named on the variable line in the [data] section of the script. The
XAxisUnit value is the appended to the species name enclosed in square brack-
ets.

The parameter SignificantDigits determines how many significant dig-
its of the formal standard error from nonlinear regression should be printed in the
output. The best-fit value is then automatically rounded to the same number of
decimal places. In special cases when the formal standard error is larger than the
best-fit value, the best-fit value is always rounded to two significant digits. Setting
SignificantDigits = 0 will disable any automatic rounding and all numer-
ical values will be printed out with the default precision of six significant digits.

... ...
By default DynaFit does not draw confidence bands or prediction bands around

best-fit model curves. To arrange for this one must modify the default output set-
tings, as is shown in the initialization code fragment immediately below.

[settings]
{Output}

ConfidenceBands = y ; and/or :
PredictionBands = y

For an example of a model confidence band plotted around the best-fit model
curve, see Figure 7.5 in Chapter 7. As an important caveat, it should be noted than if
or when the fitting model is severely over-parameterized the inference bands grow
extremely wide and/or are extremely jagged due to inevitable numerical instabilities
in the computation of nonlinear regression leverages, hii (i.e., the diagonal elements
of the “hat matrix” [2, p. 27]).

If ConfidenceBands = y, DynaFit will plot two envelope curves (upper
and lower) around each best-fit model curve, as the model confidence band. This is
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the band the encloses an area where, at the given confidence level, we can reason-
ably expect all possible model curves to lie given the statistical uncertainty in the
available experimental data.

Depending on the value of JointProbability (n or y) DynaFit will com-
pute either the “1-α approximate inference interval” [2, p. 59] according to Eqn
(9.4), or the “1-α approximate inference band” [2, p. 60] according to Eqn (9.5).

fm(x0,θ) ± s ||vT
0 R̂−1

1 || t(N−P;α/2) (9.4)

fm(x,θ) ± s ||vT R̂−1
1 ||

√
F(P;N−P;α) (9.5)

For explanation of the mathematical symbols utilized in Eqns (9.4) and (9.5),
please consult ref. [2, pp. 59-60], from which these equations are copied.

If ConfidenceBands = y, DynaFit will plot two envelope curves (upper
and lower) around each best-fit model curve, as the model confidence band. This is
the band the encloses an area where, at the given confidence level, we can reasonably
expect any additional (hypothetical) data points to lie, given the uncertainty in the
currently available experimental data.

The particular width of the data prediction band again depends the setting of
JointProbability (n or y). For example, with JointProbability =
n the data prediction band is computed according to Eqn (9.6), whereas with
JointProbability = y the width of the data prediction band is given by Eqn
(9.7). In Eqns (9.6) and (9.7), hii is the nonlinear regression leverage of the ith data
point and wi is the corresponding statistical weight.

fp(x0,θ) ± s t(N−P;α/2)

√
1+hii

wi
(9.6)

fp(x,θ) ± s
√

F(P;N−P;α)

√
1+hii

wi
(9.7)

It could be shown that the data prediction bands are by definition always wider
than model confidence bands.

9.3.11 Confidence intervals: Monte-Carlo method

DynaFit can be used to investigate confidence intervals for nonlinear model parame-
ters using the Monte-Carlo method. [32] This is arranged by including the following
code at the start of the DynaFit script:

[task]
data = ...
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task = fit
confidence = monte-carlo

The default values of relevant control parameter are listed below and are briefly
summarized in Table 9.7.

{MonteCarlo}
PerformInitialFit = y
Runs = 1000
RandomizationMethod = simulate
Distribution = normal
StandardDeviationSource = fit
StandardDeviation = 1.2
SignificantDigits = 4
HistogramBuckets = 20
TruncateMeanPercent = 5
ColorOutput = y
RandomizationSeed = 1267
ConcentrationErrorPercent = 0
OriginalEstimates = n
ConfidenceLevel = 95

Parameter Default Explanation

PerformInitialFit y See comments in the main text.
Runs 1000 The number of synthetic data sets to analyze.
RandomizationMethod simulate Otherwise shuffle or shift. See comments in text.
Distribution normal Statistical distribution of pseudo-random errors.
StandardDeviationSource fit Source for the magnitude of pseudo-random errors.
StandardDeviation 1.2 The magnitude of pseudo-random noise.
SignificantDigits 4 Number of significant digits in the simulated data.
HistogramBuckets 20 Number of histogram buckets to use for the summary

of results.
TruncateMeanPercent 5 How to compute truncated means for the summary of

results.
ColorOutput y If n, DynaFit will create gray-scale images summa-

rizing the results.
RandomizationSeed 1267 Seed for the random number generator.
ConcentrationErrorPercent 0 If nonzero, DynaFit will randomly introduce “titra-

tion error” of this magnitude.
OriginalEstimates n If y, DynaFit will start each minimization form the

original estimates of model parameters. Otherwise
from the best-fit estimates, after the initial least-
squares minimization.

ConfidenceLevel 95% If nonzero, DynaFit compute “truncated” confidence
bounds by excluding (in this case) 5% of the extreme
values found in the Monte-Carlo interval search.

Table 9.7: Control settings for Monte-Carlo investigations of confidence intervals.
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A number of the control parameters listed in Table 9.7 are self-explanatory. The
remaining parameters are discussed below.

9.3.11.1 Performing the initial least-squares-fit

If PerformInitialFit is set to y, DynaFit will perform an initial least-squares
fit starting from the initial estimates given by the user, and then proceed to investi-
gate the Monte-Carlo confidence intervals of the best-fit parameter estimates. This
is by far the most common method of utilizing Monte-Carlo confidence intervals in
DynaFit.

Otherwise, if PerformInitialFit is set to n, DynaFit will consider the ini-
tial estimates of model parameters to be “best-fit” solution already and will imme-
diately proceed to investigate their Monte-Carlo confidence intervals in the usual
manner. This feature is useful under certain special circumstances. In that case the
DynaFit script will include the following initialization code.

[settings]
{MonteCarlo}

PerformInitialFit = n

9.3.11.2 Randomization methods

The RandomizationMethod parameter can legitimately attain one of three val-
ues, which are explained below.

• simulate: DynaFit will use a random number generator to compute a pseudo-
random deviation from the best-fit model at each value of the independent vari-
able. The particular statistical distribution to be used, and the magnitude of the
deviate (e.g. the standard deviation) is explained below.

• shuffle: DynaFit will utilize the residuals of fit from the initial least-squares
regression. Each value of the independent variable, in each data set, will be
assigned a randomly selected residual.

• shift: DynaFit will again utilize the residuals of fit from the initial least-squares
regression, but this time the residuals will not be fully randomized. Instead,
the sequence of residuals will be shifted (and then wrapped around) along the
independent variable axis, starting from a randomly selected data point.

The shuffle method attempts to circumvent any particular distributional assump-
tion (e.g., Normal), which may or may not be applicable. The shift method addi-
tionally attempts to remove the assumption that the experimental errors are serially
uncorrelated. Neither of these simplifying assumptions (Normal distribution, ab-
sence of serial correlation) is very realistic when applied to real-life data set. For
example, we have shown [21] that the random experimental errors in stopped-flow
protein folding experiments are very strongly serially correlated.
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Thus the shuffle and shift randomization methods are likely to provide more
realistic results then conventional Monte-Carlo simulations. However, it is very im-
portant to note that both method rely on the assumption that the random experimen-
tal errors are have constant variance, independent on the value of the experimental
signal. That assumption may or may not hold, depending on the case.

9.3.11.3 Statistical distributions

The Distribution parameter can legitimately attain one of four values, which
are explained below.

• normal: DynaFit will simulate pseudo-random noise with zero mean and the
appropriate standard deviation (see below) drawn from the normal or Gaussian
distribution.

• cauchy: DynaFit will simulate pseudo-random noise with zero location and the
appropriate scale drawn from the Cauchy distribution.

• logistic: DynaFit will simulate pseudo-random noise with zero location and the
appropriate scale drawn from the logistic distribution.

• uniform: DynaFit will simulate pseudo-random noise with zero location and
the appropriate range drawn from the uniform distribution.

It should be noted that the uniform distribution practically never occurs in scien-
tific practice and is included as an option only for exploratory purposes. In invoking
the Cauchy and logistic distributions, the appropriate scale is formally represented
in the control settings file as StandardDeviation (see below). The same ap-
plies to uniform distribution range.

The choice of the given distribution (in particular either normal or Cauchy) will
depend on the distributional properties of the experimental noise actually observed
in the given system under investigation. Normal distribution of noise has often been
confirmed in a variety of experimental settings. However, the Cauchy distribution
should not be ignored because it provides the ability to simulate moderately “spiky”
data, with a realistic representation of outliers.

9.3.11.4 Magnitude of pseudo-random noise

The StandardDeviationSource parameter can legitimately attain one of
three values, which are explained below.

• fit: DynaFit will use as the standard deviation (assuming normal distribution)
the standard deviation of fit from the initial least squares regression, multiplied
by the particular values of the StandardDeviation parameter.

• data: DynaFit will use as the standard deviation (assuming normal distribution)
the standard error of measurement supplied explicitly with each individual data
point.
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• explicit: DynaFit will use as the standard deviation (in the case normal distri-
bution) or scale (in the case of Cauchy, logistic, or uniform distributions) the
value specified explicitly by the StandardDeviation parameter.

Please note that with StandardDeviationSource = data, the program
expects the input file to always contain three columns representing the indepen-
dent variable, the experimentally observed dependent variable, and the associated
standard error of measurement. Of course the standard error can be computed as
having any particular relationship to the experimental signal. In this fashion the
Monte-Carlo simulations in DynaFit can be performed with virtually any arbitrary
distributional assumptions.

9.3.11.5 Simulated titration (volume delivery) errors

In Monte-Carlo investigations of confidence intervals described in the literature
(for example, see ref. [32]) it is assumed that the concentration of reactants are
known with perfect accuracy and only the observed experimental signal is affected
by pseudo-random errors. However, in the study of reaction progress curves, the
shape of each progress curve can subtly change due to slight variations in the initial
concentrations. To account for this fact, DynaFit allows us to perform Monte-Carlo
investigations of confidence intervals by introducing pseudo-random errors not only
into the simulated experimental signal, but also into the initial concentrations of
reactants.

For example, to perform a Monte-Carlo investigation of confidence intervals cor-
responding to a given progress curve experiment, under the assumption that all ini-
tial concentrations are affected by ten percent titration error (i.e., random error in
volume delivery), we could use the following initialization code:

[settings]
{MonteCarlo}

ConcentrationErrorPercent = 10

Practical experience suggests that the confidence intervals for rate constants ob-
tained in this fashion are much more realistic than if the titration error is presumed
to be absent.

9.3.12 Systematic scan of initial estimates

DynaFit has the ability to evaluate a very large number of initial estimates and select
for actual least-squares optimization only those that appear most promising, in terms
of the agreement between the theoretical model (simulated with each set of initial
estimates) and the experimental data. This is arranged by the special “curly bracket,
comma delimited” notation best explained by way of an example.
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Let us assume that the given fitting model for a global set of reaction progress
curves contains five rate constants labeled k1 through k5. Let us also assume that
there is very little information available regarding the possible values of these con-
stants, other than to assume their numerical values potentially could all span six
orders of magnitude, from 10−3 to 103. Finally, let us assume that the problem un-
der investigation is somewhat sensitive to the initial estimates, such that we would
like to examine all possible estimates stepping by only one order of magnitude (i.e.,
factor of 10).

In this particular situation DynaFit could be used to rank all possible 75 = 16,807
initial estimates, in terms of the residual sum of squares they produce, by specifying
the following input code:

[constants]
k1 = {0.001, 0.01, 0.1, 1, 10, 100, 1000} ?
k2 = {0.001, 0.01, 0.1, 1, 10, 100, 1000} ?
k3 = {0.001, 0.01, 0.1, 1, 10, 100, 1000} ?
k4 = {0.001, 0.01, 0.1, 1, 10, 100, 1000} ?
k5 = {0.001, 0.01, 0.1, 1, 10, 100, 1000} ?

Indeed this notation leads to 16,807 initial parameter estimates to evaluate, be-
cause there are seven different starring values (0.001, 0.01, ... 100, 1000) to examine
for five different rate constants, which leads to 7×7×7×7×7 = 75 = 16,807 dif-
ferent combinations of starting values. With the above notation in the input script
file, DynaFit will perform the following sequence of steps:

1. Evaluate the sum of squared deviations for all 16,807 initial parameter esti-
mates.

2. Rank the results, from lowest to highest residual sum of squares.
3. Report a certain number of the best initial estimates in the final report.
4. Perform the full least-squares fit starting from a certain number of the best initial

estimates.
5. Rank the results of fit, from lowest to highest residual sum of squares.
6. Report the best-fit parameter estimates for all parameter combinations that were

subjected to full least-squares optimization.
7. Identify the overall best-fitting combination in terms of the final (fully opti-

mized) residual sum of squares.

The operation of this algorithm are controlled by the following initialization
code:

{EstimateScan}
EstimatesMax = 10000
ReportSizeMax = 1000
RefineEstimates = 10

The value of EstimatesMax determines how many combinations of individual
parameters’ estimates DynaFit should attempt to handle. It is important to realize
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that, as the number of rate constants increases in a relative modest fashion, the total
number of combinations of initial estimates grows very rapidly.

Let us assume that we wish to examine seven different estimates for each rate
constant. For example, this might involve a certain “middle” value of a particular
rate constant (such as “1”) surrounded by three lower values, stepping by an order
of magnitude (0.001, 0.01, 0.1), and three higher values, again stepping by an order
of magnitude (10, 100, 1000). How many combinations of initial estimates are in-
volved, depending on the number of rate constants (n) we wish to treat in this way?
The answer is illustrated in the table below.

n estimates
1 71 = 7
2 72 = 49
3 73 = 343
4 74 = 2,401
5 75 = 16,807
6 76 = 117,649

Practical experience shows that the maximum number of rate constants or other
model parameters that can be systematically searched in this way is approximately
four, with approximately seven estimates per parameter.

The value of ReportSizeMax determines how many of the best-ranked initial
estimates, among those that were actually examined, should be included in the final
report. The default value (1,000) is probably the largest realistic number. For ap-
proximately 10,000 initial estimates included in the final report the file size grows
exceedingly large and the report become unwieldy.

The value of RefineEstimates determines how many of the best-ranked
initial estimates should be subjected to full least-squares optimization. The default
value (10) is almost certainly too low in almost all except perhaps the easiest prob-
lems examined to date. A much more realistic value is on the order of 100 or even
1,000 initial estimates subjected to full optimization, depending on the particular
problem.

9.3.13 Fast exponential fit

DynaFit provides a specialized algorithm for exponential or multi-exponential fit-
ting. The exponential models are inherently nonlinear and therefore usually require
the user to specify initial estimates or both the exponential rate constants and the as-
sociated amplitudes. However, the algorithm embedded in DynaFit does not require
such estimates. For further details see refs. [23, 24].

It is important to note that the tradeoff for fast execution and the lack of initial
estimates means that the algorithm described in [23, 24] occasionally provides on a
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very crude estimate of the optimal solution. Therefore, it is often necessary to refine
this initial estimate by using an more sophisticated method.

{ExponentialFit}
Degree = 4
Automatic = y
AllowOscillations = n
TinyAmplitudes = 0 ; | 0.000001
RefineEstimate = y

Parameter Default Explanation

Degree Maximum degree of the exponential function. The al-
gorithm will optionally select any appropriate degree
at most equal to this.

Automatic y Whether or not to enable automatic selection of the
exponential degree.

AllowOscillations n Whether or not the multi-exponential function is al-
lowed to contain oscillatory terms (irrational rate con-
stants and amplitudes leading essentially to sine / co-
sine functions).

TinyAmplitudes 0 Maximum acceptable amplitude of any oscillatory
terms.

RefineEstimate y Whether or not the initial estimate should refined by
a conventional (iterative) least-squares data fitting al-
gorithm.

Table 9.8: Control settings for automatic multi-exponential fit.

It should also be noted that the algorithm works correctly only if the data points
are spaced on the time axis by exactly identical increments. If this requirement is not
satisfied, the algorithm can still be used by it is then necessary to always perform a
refinement of the initial estimate by using the usual least-squares fitter.

9.3.14 Optimal design of experiments

DynaFit has a capability to provide advice on the optimal design of experiments.
The options are controlled by the following settings. See Table 9.9 for a brief expla-
nation and the text below for details.

{OptimalDesign}
Algorithm = AS ; | DE | BFGS
Function = D ; | T | E | V
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Parameter Default Explanation

Algorithm AS Optimization algorithm. See text for details.
Function D Optimization criterion. See text for details.

Table 9.9: Control settings for optimal experiment design.

Optimization algorithms

DynaFit offers a choice among three constrained optimization algorithms:

1. AS: A heavily modified variant of the Active Set algorithm initially developed
by Hager and Zhang [13, 14, 15].

2. DE: An adaptation of the Differential Evolution algorithm due to Price et al.
[29]

3. BFGS: A variant of a classic algorithm is generally known as L-BFGS-B, or lim-
ited memory bound-constrained Broyden-ŰFletcher-ŰGoldfarb-ŰShanno algo-
rithm [6, 34].

The AS algorithm is probably the preferred method. It converges very rapidly in
almost all cases tested, but it has been observed to occasionally diverge in certain
particularly challenging design problems.

The DE algorithm seems to always guarantee the correct solution, but the con-
vergence can be excruciatingly slow. It is therefore recommended for follow-up
computations, to verify results obtained by AS in especially important cases.

The BFGS algorithm is experimental and not yet thoroughly tested. It seem to
converge exceptionally rapidly in certain “easy” design problems. Overall the AS
algorithm probably strikes the balance between sufficient speed of computation and
guaranteed convergence to a truly optimal design.

Optimization criteria

DynaFit offers a choice among four optimization criteria for the purpose of optimal
experimental design:

1. D: Determinant of the Fisher information matrix (D-optimal experimental de-
sign [12, 1]).

2. T: Trace of the Fisher information matrix.
3. E: Eigenvalues of the Fisher information matrix. More precisely, the algorithm

will optimize the experimental design such that the smallest eigenvalue is max-
imized.

4. V: Variance of the optimized model parameters.

It should be noted that as of this writing the optimal design module in DynaFit
has not yet been thoroughly tested. Until sufficient experience accumulates with the
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various options and algorithms, these settings should be treated as experimental and
the results should be interpreted with caution.

9.3.15 Model selection

DynaFit has a capability to provide advice on selecting the most plausible fitting
model among multiple candidate models. The options are controlled by the follow-
ing settings. See Table 9.10 for a brief explanation and the text below for details.

{ModelSelection}
PrioritizeCriterion = akaike ; | bayesian
ConfidenceIntervalRangeMax = 10000
CoefficientOfVariationMax = 100
CoefficientOfVariationSearchMax = 200
InformationCriterionDeltaMax = 5
InformationCriterionWeightMin = 0.01
RelativeSquaresMax = 1.05
OnlyConstants = n

Parameter Default Explanation

PrioritizeCriterion akaike Priority information criterion (AIC or BIC).
ConfidenceIntervalRangeMax 10000 Maximum acceptable confidence interval range
CoefficientOfVariationMax 100 Maximum acceptable coefficient of variation (CV)
CoefficientOfVariationSearchMax 200 Maximum acceptable CV during profile-t CI search
InformationCriterionDeltaMax 5 Maximum acceptable ∆ AIC or ∆ BIC

InformationCriterionWeightMin 0.01 Minimum acceptable wAIC or wBIC
RelativeSquaresMax 1.05 Maximum acceptable relative sum of squares
OnlyConstants n Ignore other globally optimized parameters

Table 9.10: Control settings for model selection.

9.3.15.1 AIC vs. BIC priority

The second-order (i.e. small-sample corrected) Akeike information criterion (AIC)
is defined by Eqn (9.8), whereas the corresponding Bayesian information criterion
(BIC) is defined by Eqn (9.9), where SSQ is the sum of squared deviations between
the experimental data and the theoretical model; nD is the number of experimental
data points; and nP is the number of optimized model parameters.
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AIC = nD ln
SSQ
nD

+2 (nP +1)+
2(nD +1)(nP +1)

nD−nP−2
(9.8)

BIC = nD ln
SSQ
nD

+ lnnD (nP +1)+
2(nD +1)(nP +1)

nD−nP−2
(9.9)

The ranking of candidate fitting models according to AIC or BIC is usually
identical, but in some exceptional cases it can be different. The control parameter
PrioritizeCriterion can have two values, either akaike or bayesian.
Depending on the particular value, the given information criterion is afforded a
priority in ranking candidate theoretical models by their relative plausibility. For
further details, see refs. [26, 27, 5].

9.3.15.2 Maximum acceptable confidence interval range

The model selection algorithm proceeds in two stages. In the first stage, the ad-
justable parameters appearing in each candidate fitting model are examined, to see
how well the parameters are defined by the data. The best way to make this assess-
ment is to examine the confidence intervals of each fitting parameter. As a reminder,
we can request the computation of confidence intervals by using the “double ques-
tion mark” notation, according to the example code fragment below:

[constants]
k_1 = 1.234 ?? ; "??" = compute confidence interval

The control parameter ConfidenceIntervalRangeMax is used to test
the ratio of the upper limit of each confidence interval divided by the interval’s
lower limit. If the upper/lower limit ratio is higher than the value defined by
ConfidenceIntervalRangeMax, the particular fitting parameter is consid-
ered as not sufficiently well defined by the available experimental data, and thus the
candidate model is declared as implausible.

9.3.15.3 Maximum acceptable coefficient of variation

In certain special cases, we might want to attempt a model-selection analysis even
without having computed full confidence intervals for adjustable model parameter.
Under those circumstances DynaFit will attempt to assess the validity of adjustable
model parameters solely on the basis of the coefficient of variation for model pa-
rameters. A coefficient of variation (in percentage points) is defined as the standard
error of the given model parameter, divided by the parameter’s best-fit value, times
one hundred. As a reminder, we can request the computation of standard errors by
using the “single question mark” notation, according to the example code fragment
below:
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[constants]
k_1 = 1.234 ? ; "?" = compute standard error only

The control parameter CoefficientOfVariationMax is used to assess the
plausibility of any given candidate model as follows. If the coefficient of variation
for any globally optimized model parameter is higher than the value defined by
CoefficientOfVariationMax, the particular fitting parameter is considered
as not sufficiently well defined by the available experimental data, and thus the
candidate model is declared as implausible.

For continuous experiments of reaction-progress type (data = progress, as
opposed to data = progress discontinuous or any other data type), the
coefficient of variation being tested is actually the “empirical” value rather than CV
as such, as is explained in 9.3.1.3.

9.3.15.4 Maximum acceptable CV during profile-t CI search

In extremely unfavorable circumstances the fitting model might be essentially unde-
fined by the available experimental data (“model redundancy”). Practical experience
shows that for certain especially ill-conditioned models, the full systematic confi-
dence interval search might produce spurious bounds for some model parameters.
The existence of such spurious parameter bounds could distort the model discrimi-
nation analysis.

This particular control setting was introduced in order to handle such unfavor-
able situations, according to the following rule. If the confidence interval appears
closed for a given parameter while, at the same time, the value of CoefficientOf-
VariationSearchMax is greater than specified limit, then the particular parameter
will be deemed insufficiently well defined in the context of model discrimination
analysis.

To disable this feature, the initialization parameter CoefficientOfVariation-
SearchMax can be optionally assigned zero value.

9.3.15.5 Maximum acceptable ∆AIC or ∆BIC

All candidate models that survive the acceptance vs. exclusion test described in
sections 9.3.15.2 or 9.3.15.3 are subsequently scrutinized in the second stage of the
model selection algorithm, as follows.

According to a model selection strategy explained in detail by Burnham & An-
derson [5], a set of n candidate theoretical models should first be arranged in order
of increasing AIC values associated with each model. The “best” model (associated
with the lowest value of AIC, i.e., AIC1 = AICmin) is assigned ∆AIC1 = 0 and the
remaining models (i = 2,3, ...n) are assigned ∆AICi = AICi−AIC1. According to
a rule of thumb presented by these authors [5, p. 70]:
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The larger ∆AICi is, the less plausible it is that the fitted model [...] is the [...] best model,
given the data [...]. Some rough rules of thumb are available and are particularly useful for
nested models:

∆AICi Level of Empirical Support of Model i
0–2 Substantial
4–7 Considerably less
> 10 Essentially none

In other words, all models characterized by ∆AICi less than 10 are still somewhat
plausible, whereas any given model characterized by ∆AICi > 10 can probably be
safely excluded from consideration.

The control parameter InformationCriterionDeltaMax allows DynaFit
users to set this cut-off value of ∆AIC. Any model that is associated with a greater
value of ∆AIC will be deemed implausible by DynaFit.

9.3.15.6 Mimimum acceptable Akaike or Bayesian weight

Burnham & Anderson [5, p. 75] introduced a quantity denoted as “Akaike weight”
defined in Eqn (9.10), where w(AIC)

i is the Akaike weight of the ith model under
consideration; m is the number of candidate models; and ∆AICi is the differential
information theoretic criterion defined in the immediately preceding section.

w(AIC)
i =

exp
(
− 1

2 ∆AICi
)

m

∑
j

exp
(
−1

2
∆AICi

) (9.10)

According to these authors, the Akaike weight can be viewed as a model proba-
bility, that is, a number between zero and unity that measures the statistical proba-
bility of model i being the “true” model. The value zero means that the i model si
completely impossible, whereas a unit value for w(AIC)

i means that the given model
is perfectly certain and therefore unambiguously preferred over any remaining can-
didate models.

The “Bayesian weight”, w(BIC), is defined in same way as the Akaike weight,
except for the fact that AIC is replaced by BIC in Eqn (9.10).

The control parameter InformationCriterionWeightMin allows Dy-
naFit users to set this cut-off value of w(AIC)

i or w(BIC)
i . Any model that is associated

with a smaller value of w(AIC)
i or w(BIC)

i will be deemed implausible by DynaFit.
Practical experience shows that in order for any given fitting model to be considered
at least marginally plausible, its Akaike or Bayesian weight must be at least 0.01
(one percent probability of the model being “true”).
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9.3.15.7 Maximum acceptable relative sum of squares

Very importantly, the ∆AIC and w(AIC) model acceptance tests described in sec-
tions 9.3.15.5 and 9.3.15.6, respectively, cannot be applied for continuous exper-
iments of reaction-progress type (data = progress, as opposed to data =
progress discontinuous or any other data type). The reason is that the in-
dividual time-points recorded in such experiments are not statistically independent,
and therefore the usual statistical tests and procedures do not apply to them.

In the case of continuous reaction progress experiments, DynaFit uses a heuris-
tic rule of thumb similar to the procedure described by Johnson et al. [19, 18] for
assessing the uncertainty of model parameters. In the case of continuous assays,
the information theoretic criteria AIC or BIC are indeed used for the ranking of
candidate models, but not for the acceptance or exclusion of any given model.

Instead, after the models are first ranked by AIC or BIC, the model selection al-
gorithm in DynaFit then evaluates the ratio of the residual sum of squares associated
with each particular model divided by the residual sum of squares associated with
the “best” model. All candidate models for which this ratio is greater than the partic-
ular numerical value set by RelativeSquaresMax are excluded as implausible.

9.3.15.8 Utilize only rate constants for model selection

The control parameter OnlyConstants can be used to instruct the model-selection
algorithm to consider only microscopic rate constants or equilibrium constants in the
process of selecting the optimal regression model. This is useful when one or more
candidate models contain globally optimized initial concentrations and/or globally
optimized molar response factors.
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