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Determination of tight-binding inhibition constants
by nonlinear least-squares regression requires suffi-
ciently good initial estimates of the best-fit values.
Normally an initial estimate of the inhibition constant
must be provided by the investigator. This paper de-
scribes an automatic procedure for the estimation of
tight-binding inhibition constants directly from dose–
response data. Because the procedure does not re-
quire human intervention, it was incorporated into an
algorithm for high-throughput screening of enzyme
inhibitors. A suitable computer program is available
electronically (http://www.biokin.com). Representa-
tive experimental data are shown for the inhibition of
human mast-cell tryptase. © 2000 Academic Press
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“Tight binding” is defined as a condition where the
active enzyme concentration is approximately equal to,
or even higher than, the apparent inhibition constant.
For tight-binding inhibitors, inhibition constants Ki

app

(1) are more useful measures of inhibitory potency
than IC50 values or nominal values of relative enzy-

atic activity determined at a single concentration of
he inhibitor (“percentage inhibition”).

Unfortunately, unlike these simpler measures of inhib-
tory potency, tight-binding inhibition constants can be
btained only by nonlinear least-squares regression (2–4)
f dose–response data. In all nonlinear regression analy-
es, the investigator must provide a sufficiently good ini-
ial estimate of the parameter to be determined (here, the
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tight-binding inhibition constant). For the relatively sim-
ple data analysis discussed in this paper, and for most
sets of data that can be encountered, the initial estimate
of the inhibition constant need only be within about an
order of magnitude of the actual values. Nevertheless,
the determination of inhibition constants from dose–
response data does require human intervention, which
presents an obstacle in high-throughput or automated
experiments.

In this paper we describe a computational procedure
that can be used to make a rough estimate of the
apparent tight-binding inhibition constant automati-
cally, without human intervention. “Classical” inhibi-
tion constants pertaining to less tightly bound inhibi-
tors (Ki

app much greater than enzyme concentration)
are also readily determined by the same procedure.

The estimation procedure was incorporated into an
algorithm for automated screening of inhibition activity
on commercial 96-well plate readers. The initial estimate
is subsequently refined by nonlinear least-squares fit. As
an illustrative example, we show a set of typical data for
the inhibition of human mast-cell tryptase by two differ-
ent inhibitors, namely, phenylguanidine (a classical in-
hibitor, Ki

app ' 50 mM) and a tight-binding inhibitor APC-
1390 (Scheme 1; Ki

app ' 50 pM).

METHODS

Materials

Tos-Gly-Pro-Lys-pNA (Sigma, St. Louis, MO) and
phenylguanidine (Sigma-Aldrich, Milwaukee, WI)
were purchased from the indicated commercial
sources. Mast-cell tryptase was purified from the im-
mortalized human mast cell line HMC-1 as previously
reported (5). APC-1390 was synthesized at Axys Phar-
maceuticals as described (6).
0003-2697/00 $35.00
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Experimental

Kinetic measurements were performed in a total re-
action volume of 100 ml in 96-well U-bottom microtiter
plates (Falcon). Measurements of substrate hydrolysis
were made using a Thermomax kinetic plate reader
(Molecular Devices, Sunnyvale, CA). Tryptase (290 pM
or 2.5 nM active site) was combined with inhibitor at
varying concentrations in a buffer containing 50 mM
Tris (pH 8.2), 150 mM NaCl, 0.05% Tween 20, 10%
DMSO and 50 mg/ml heparin for 1 h at room temper-
ature. Control reactions in the absence of inhibitor
were performed in replicates of eight. Reactions were
initiated by the addition of substrate (0.5 mM Tos-Gly-
Pro-Lys-pNA) and the rate of substrate hydrolysis was
measured by monitoring the change in absorbance at
405 nm over 5 min. The apparent inhibition constants
were calculated from the enzyme progress curves using
the method described in this paper.

Computational

According to Williams and Morrison (1), the appar-
ent tight-binding inhibition constant Ki

app (subsequent-
ly referred to as K, for brevity) can be determined by
nonlinear least-squares fit of reaction velocities to Eq.
[1], where v is the initial reaction velocity observed at
inhibitor concentration [I], v 0 is the initial reaction
velocity observed in the absence of inhibitor, and [E] is
the active enzyme concentration. Usually [E] is treated
as a constant parameter, while v 0 and K are considered
as adjustable parameters for which the investigator
must provide initial estimates to be refined in the
regression.

v 5 v0

@E# 2 @I# 2 K 1 Î~@E# 2 @I# 2 K! 2 1 4@E#K
2@E#

[1]

Let us assume that the regression analysis is to
proceed automatically, for example in an automated

SCHE
high-throughput screening of enzyme inhibitors, some
of which might be tight binding. Under those circum-
stances it is desirable to estimate v 0 and K directly
from the experimental data. As an initial guess of the
best-fit value of v 0, we use the reaction velocity exper-
imentally observed in the absence of inhibitor. The
initial estimate of the apparent inhibition constant K is
determined as described below.

Explicit formula for the apparent inhibition constant.
Equation [1] can be rearranged in order to express K as
shown in Eq. [2]:

K 5
@I# 2 @E#~1 2 v/v0!

v0 /v 2 1 . [2]

According to Eq. [2], the apparent tight-binding inhi-
bition constant can be computed from any pair of initial
velocity measurements v, in the presence of the inhib-
itor (at concentration [I]), and v 0, in the absence of the
inhibitor.

In the hypothetical case of experimental measure-
ments devoid of random errors, it would be sufficient to
perform only two measurements of velocity, namely, v
and v 0, from which the inhibition constant K would be
calculated immediately. In practice, each measure-
ment of v and v 0 is affected by random experimental
error. It is therefore advantageous to perform the mea-
surements of reaction velocity at different values of the
inhibitor concentration [I]j ( j 5 1, 2, . . . , n), calculate
n slightly different values of the inhibition constant at
each concentration, and finally estimate the true value
of K as an average according to Eq. ([3]):

K 5
1
n O

j51

n

Kj, [3]

Kj 5
@I# j 2 @E#~1 2 vj/v0!

v0 /vj 2 1 . [4]
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64 KUZMIČ ET AL.
Iterative reweighting scheme. Inhibition constant
K, estimated as a simple average according to Eq. [3],
suffers from the drawback that not all values of K j ( j 5
1, 2, . . . , n) can be considered equally significant. For
example, reaction velocities measured at extremely
high inhibitor concentrations (e.g., [I] . 1000K) will be
practically zero, whereas reaction velocities measured
at extremely low inhibitor concentrations (e.g., [I] ,
0.001K) will be practically equal to v 0. In both extreme
cases, the measured reaction velocity contains little or
no information about the true value of the inhibition
constant K.

To circumvent this difficulty, we estimate the inhi-
bition constant K as a weighted average (Eq. [5]) in-
stead of a simple average (Eq. [3]). The weighting fac-
tors wj (Eq. [6]) are sensitivity coefficients, i.e., partial
derivatives of the observable quantity (the reaction
velocity v) with respect to the adjustable parameter of
interest (the apparent inhibition constant). The modi-
fied estimation procedure proceeds iteratively, accord-
ing to the combined equations [5] and [6]:

K ~m11! 5

O
j51

n

w j
~m!K j

~m!

O
j51

n

w j
~m!

, [5]

w j
~m! 5

v0

2@E#S @E# 1 @I# j 1 K j
~m!

Î~@E# 2 @I# j 2 K j
~m!! 2 1 4@E#K j

~m!
2 1D .

[6]

n the first iteration (m 5 1) all weights are set to
nity, wj

(1) 5 1 ( j 5 1, 2, . . . , n) and the apparent
inhibition constant is calculated as a simple average,
by using Eq. [3]. In each subsequent iteration (m 5 2,
3, . . . , mmax), we calculate first the weights according
to Eq. [6] and then we update the weighted average
according to Eq. [5]. When two subsequent estimates
(K (m) and K (m11)) agree to a sufficient number of signif-
cant digits, the iteration is terminated.

RESULTS

Monte Carlo Simulations

The accuracy of the newly proposed estimation
method was tested in several series of Monte Carlo
simulations. Each individual simulation/estimation ex-
periment proceeded in three stages. In the first stage,
error-free initial velocities were generated by using Eq.
[1]. The values of parameters and variables were se-
lected to resemble a typical dose–response obtained in
an automated screening experiment.
The enzyme concentration was fixed at [E] 5 1.0 nM.
Each simulated dose–response curve contained eight
points, corresponding to the following inhibitor concen-
trations: 10.0, 2.50, 0.6250, 0.1563, 0.0391, 0.0099,
0.0010, and 0.0005 mM. The reaction velocity in the
absence of inhibitor was arbitrarily set to unity, v 0 5
1.0. Dose–response curves were generated for the val-
ues of apparent inhibition constants K spanning 10
orders of magnitude between 100 mM and 10 pM (K 5
100 mM, 10 mM, . . . , 0.1 nM, 0.01 nM). The simulated

ose–response curves are shown in Fig. 1.
In the second stage of each simulation/estimation

xperiment, normally distributed pseudorandom error
ith standard deviation 0.05 (5% scatter) was super-

mposed on the simulated data. Finally, the artificial
noisy” data were subjected to the iterative estimation
rocedure described in the Methods section, which gen-
rated an estimate of the inhibition constant K. Each

series of simulation/estimation experiments was re-
peated 10,000 times with different sets of pseudoran-
dom error imposed on the artificial data. The basic
statistics (average, standard deviation, maximum

FIG. 1. Layout of inhibitor concentrations in the Monte Carlo sim-
ulation study. Dose–response curves labeled a–h correspond to the
simulated values of the apparent inhibition constants K 5 100 mM
(curve a) and K 5 10 pM (curve h), stepping by a factor of 10.
Symbols represent the reaction velocities at corresponding inhibitor
concentrations (eight concentrations per dose–response curve), sim-
ulated by using the Morrison equation [1] (1). To each ideal data
point shown here, normally distributed pseudorandom error was
added with standard deviation 0.05 (5%). Ten thousand random data
sets were generated for each ideal dose–response curve shown here.
The resulting “noisy” data were subjected to the weighted-average
procedure described in the Methods section to determine the appar-
ent inhibition constant K.
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value, and minimum value) from each series are sum-
marized in Table 1.

The results show that at each tested value of K
except K 5 100,000 nM, the estimated values devi-
ated from the simulated values by less than 10%. At
the highest value of the inhibition constant, K 5
100,000 nM, the spread of estimated values was much
higher but still within one order of magnitude in com-
parison with the “true” or simulated value.

Comparison with Existing Methods

Henderson (7) proposed a linearized form of Eq. [1]
designed for the estimation of apparent inhibition con-
stant K as the slope of a linear plot. When the ratio
I]/(1 2 v/v 0) is plotted against v 0/v (a transformed

independent variable), the apparent tight-binding in-
hibition constant K is obtained as the slope:

@I#
1 2 v/v0

5 K
v0

v 1 @E# [7]

One possible application of the Henderson plot is to
subject appropriately transformed dose–response data
to a linear least-squares regression, which has the
advantage that no initial estimate is needed for the
value of K. Accordingly, each of the 100,000 simulated
data sets described above (10 series of 10,000 data sets,
at different values of the apparent inhibition constant)
was transformed according to the Henderson method
and then subjected to linear least-squares regression.
The value of K was taken as the slope of each best-fit
line. The results are summarized in Table 2.

The results in Table 2 show that the Henderson
linearization method performs very well for values of
inhibition constants that are at or below the nominal
enzyme concentration (tight-binding conditions). How-
ever, the Henderson method fails on weakly bound

TABLE 1

Simulated and Estimated Values of the Apparent
Inhibition Constant K

Simulated K
(nM)

Fitted K (nM)

Average
Standard
deviation Maximum Minimum

0.01 0.01002 0.00061 0.012 0.0081
0.1 0.1000 0.0025 0.11 0.092
1 1.001 0.023 1.08 0.92
10 10.2 0.30 11.4 9.1
100 100.4 2.4 115 95
1,000 1,001 20 1,105 933
10,000 10,070 450 14,090 9,070
100,000 102,000 13,000 417,000 73,000

Note. For details of the Monte Carlo simulation experiments, see
text in the Methods section.
inhibitor (classical conditions). The spread of esti-
mated inhibition constants listed in the last four rows
of Table 2 is very large and even includes large nega-
tive values, which is physically impossible.

Sample Experimental Data

As a representative example, we have analyzed the
inhibition of human mast-cell tryptase by APC-1390 (a
tight-binding inhibitor) and phenylguanidine (a classi-
cal inhibitor). The experimental data and the results of
analysis are summarized in Table 3.

It is important to compare the predicted values of
apparent, tight-binding inhibition constants, listed on
the last line of Table 3, with the corresponding values
optimized by the least-squares fit. To that end, we have
subjected the same data to a nonlinear least-squares
regression analysis by using a procedure developed by
Duggleby (8). The results of the least-squares fit (a
best-fit curve superimposed on the experimental data)
are illustrated in Figs. 2 and 3.

For APC-1390 we obtained the least-squares opti-
mized value of K 5 59.5 6 6.7 pM, which is very close
to the initial estimate, K 5 66.3 pM. The least-squares
value for phenylguanidine was K 5 59.0 6 2.6 mM as
compared with K 5 62.0 mM for the initial estimate. In
summary, the initially estimated value and the best-fit
value of apparent constants were practically identical
for both the tight-binding and the classical inhibitor.
This is illustrated by the close agreement between the
solid (least-squares fit) and dashed (estimated) lines in
both Figs. 2 and 3.

DISCUSSION

Greco and Hakala (9) compared the reliability of 11
different methods for the determination of tight-bind-
ing enzyme inhibition constants. Most of these early
analytical methods relied on graphical (or linear re-

TABLE 2

Simulated and Estimated Values of Apparent Inhibition
Constants K Using the Henderson Equation [7] (7)

Simulated
K (nM)

Fitted K (nM)

Average
Standard
deviation Maximum Minimum

0.01 0.010000 0.000053 0.010194 0.009791
0.1 0.1000 0.00052 0.10190 0.09799
1 0.9999 0.0052 1.0174 0.9808
10 9.999 0.049 10.189 9.831
100 91.8 575.0 6,804.2 241,829.3
1,000 1,285 13,033 377,224 21,220,830
10,000 11,643 3,162,220 22,841,200 2311,495,000
100,000 251,964 86,296,500 4,665,960,000 25,939,910,000

Note. For details of the Monte Carlo simulation experiments, see
ext in the Methods section.
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66 KUZMIČ ET AL.
gression) procedures, such as the Henderson plot (7).
Linear regression has the advantage of not requiring
an initial estimate of K i

app from the investigator, but
nfortunately it is statistically unreliable. A more re-
ent review on tight-binding inhibition (10) confirms
his assessment of the linear Henderson plot.

In contrast, the nonlinear least-squares fit (2–4) of
ose–response data to the Morrison equation [1] (11)
as identified statistically as the most reliable method

9). However, the disadvantage is that the investigator
ust provide for each inhibitor an educated guess of its

TAB

Inhibition of Human Mast-Cell Trypt

j

APC-1390 ([E] 5 0.29 nM)

[I]j (mM) vj(106 3 au/s) K (pM

0 0.000 78.55 —
1 0.234 31.89 42.2
2 0.351 21.58 53.2
3 0.526 13.89 61.7
4 0.790 9.55 74.1
5 1.185 8.42 111.2
6 1.770 4.05 81.2
7 4.000 3.17 156.6
8 — — —

K 5 66.3 pM

Note. The values of apparent inhibition constants Kj were calculat
the table lists the iteratively reweighted averages computed by usin
of K agreed within six significant digits.

a Velocities greater than control are automatically excluded from

FIG. 2. Inhibition of human mast-cell tryptase by APC-1390. The
dashed curve was generated according to the Morrison equation [1]
(11), by using the automatically generated initial estimate for the
apparent inhibition constant, K 5 66.3 pM. The solid curve was
enerated by using the best least-squares fit value of the inhibition
onstant, K 5 59.5 6 6.7 pM.
nhibition constant. This is a serious impediment in
eveloping analytical techniques suitable for auto-
ated data processing required in high-throughput

iochemical screening laboratories. To the best of our
nowledge, no automatic procedure or computer pro-
ram for the determination of apparent inhibition con-
tants has been described in the available literature.
erhaps the issue is that most companies have their
wn in-house programs and have not shared these with
he research community.

In this paper we have described a novel method for
utomating the process of making a statistically reli-
ble guess of the apparent enzyme inhibition constant
1) (either tight-binding, where K ' [E] or even K ,
E], or classical, where K @ [E]) directly from dose–
esponse data. The reliability of the estimation proce-
ure was tested in a series of Monte Carlo simulations.
hile assuming a realistically large random experi-
ental error (5%), we found that our new estimation

rocedure yielded estimates of K i
app that differed from

the simulated values by, at most, several percent. The
only exception was a Monte Carlo experiment in which
the maximum concentration of inhibitor (10 mM) was
ery much lower than the inhibition constant (100

mM). However, even in this case the spread of esti-
mated values falls within one order of magnitude from
the “true” or simulated value.

These favorable results are in contrast with those
that were obtained by using the linear Henderson plot
(7) (see Table 2) and similar methods (12) (data not
shown). We found that the linear least-squares fit ac-
cording to the Henderson method (7) performed quite
well under the tight-binding conditions (K ' [E]) but
ailed systematically under the classical conditions (K

[E]). We considered the possibility of employing for
he classical conditions a linear regression procedure

3

by APC-1390 and Phenylguanidine

Phenylguanidine ([E] 5 2.5 nM)

[I]j (mM) vj(106 3 au/s) K (mM)

0.00 702.80 —a

0.46 715.60 —a

1.37 722.10 —a

4.12 662.10 66.94
12.35 587.20 62.73
37.04 454.50 67.80

111.10 241.80 58.27
333.30 103.30 57.43

1000.00 38.19 57.46
K 5 62.0 mM

for each inhibitor concentration by using Eq. [4]. The botton row in
q. [5]. The iterations were terminated when two consecutive values

analysis.
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based on the Dixon plot (of reciprocal velocity against
the inhibitor concentration), from which the classical
inhibition constant can be obtained. The fundamental
problem is that this approach would require an auto-
matic way to switch methods, from the Henderson
model to the Dixon model. In addition, we found that
the Dixon method fails on moderately noisy data when
the extent of inhibition is small (results not shown).

The analytical procedure proposed here, for the au-
tomatic determination of inhibition constants from ini-
tial reaction velocities, is similar in principle to the
method proposed by Kurganov et al. (13), for the com-
putation of receptor-ligand dissociation constants from
intrinsic fluorescence data. The authors noted that
from any three sufficiently accurate measurements of
intrinsic fluorescence (one in the presence of the li-
gand, one in its absence, and one conducted at a satu-
rating concentration), it is possible to calculate imme-
diately the receptor-ligand dissociation constant. Our
procedure differs from the Kurganov method (13) by
requiring only two measurements for each estimate
and by iterative reweighting, which improves the pre-
cision of the estimate approximately by a factor of two
to three.

The estimation method described in this paper was
incorporated into a comprehensive algorithm for auto-
matic determination of both the tight-binding and the
classical inhibition constants during high-throughput
screening of drug candidates. The complete algorithm
proceeds in two stages. In the first stage, an estimate of

FIG. 3. Inhibition of human mast-cell tryptase by phenylguani-
dine. See legend to Fig. 2 for details.
K i is made by using the weighted-average method. In
the second stage, the initial estimate is refined by
nonlinear least-squares regression. This technique al-
lowed a successful automatic determination of inhibi-
tion constants that span many orders of magnitude.
For example, APC-1390 is a picomolar inhibitor while
phenylguanidine is a micromolar inhibitor of mast-cell
tryptase. In the absence of an automatic method for
making initial estimates of K i

app, it would be necessary
for a human operator to provide a sufficiently good
guess (accurate within an order of magnitude) or else
the nonlinear least-squares fit of initial velocities
would fail (4).

The combined method for data analysis described in
this paper has been successfully deployed to automat-
ically determine over 100,000 inhibition constants
from multiple enzyme targets. The inhibitor examples
presented, with K i

app ranging from picomolar to micro-
olar, are representative of the broad utility and ro-

ustness of the computational method. A computer
rogram performing these calculations can be obtained
ia the World Wide Web at the address given in the
bstract.
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