
It is easy to forget that AIC and MDL are just fancy statistical tools that
were invented to aid the scientific process. They are not the arbiters of
truth. Like any such tool, they are blind to the quality of the data and the
plausibility of the models under consideration. They will be most useful
when considered in the context of the other selection criteria outlined at
the beginning of this chapter (e.g., interpretability, falsifiability).
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Introduction

The analysis of enzyme inhibition data in the context of preclinical drug
screening presents unique challenges to the data analyst. The good news
lies in the advances in laboratory robotics, miniaturization, and computing
technology. However, the good news is also the bad news. Now that we can
perform thousands of enzyme assays at a time, how do we sensibly manage
and interpret the vast amount of generated information? New methods
of biochemical data analysis are needed to match the improvements in
research hardware.

Another challenge is presented by increasing constraints on material
resources, given the need to assay an ever larger number (thousands or
hundreds of thousands) of individual compounds in any given project. Of
course, only a small number of hits advance from high-throughput
screening, using a single-point assay, into the dose–response screening to
determine the inhibition constant. Even so, the sheer number of enzyme in-
hibitors that need to be screened often leads to suboptimal experimental
design.

For example, a strategic decision may have been made that all inhibitor
dose–response curves will contain only 8 data points (running down the
columns of a 96-well plate), and that the concentration–velocity data points
will not be duplicated, so that each 96-well plate can accommodate up to 12
inhibitors. With only eight nonduplicated data points, and with as many as
four adjustable nonlinear parameters (e.g., in the four-parameter logistic

366 numerical computer methods [15]

Copyright 2004, Elsevier Inc.
All rights reserved.

METHODS IN ENZYMOLOGY, VOL. 383 0076-6879/04 $35.00



equation), the experimental data better be extremely accurate and the
concentrations optimally chosen. Alas, too often neither is the case.

This chapter is concerned with one particular nuisance arising in sec-
ondary preclinical screening of enzyme inhibitors, namely, the presence
of gross outliers. For our purposes, outliers are data points that are affected
by gross errors caused by malfunctioning volumetric equipment, by a
human error in data entry, or by countless other possible mishaps. It is
shown that Huber’s Minimax approach to robust statistical estimation is
particularly preferable over the conventional least-squares analysis.

Theory

Iteratively Reweighted Least Squares

Assume that the dependent variable y is related to the independent
variable x through the functional relationship y ¼ f ðx; pÞ, where p is the
m vector of adjustable model parameters to be estimated from the avail-
able data pairs {{x1, y1}, {x2, y2}, . . . , {xn, yn}}. The usual ordinary least-
squares1–3 (OLS) estimation problem can be formulated as is shown in
Eq. (1).

min
p

S ¼
Xn

i¼1

ðyi � f ðxi; pÞÞ2 (1)

Many efficient computational methods exist to accomplish this mini-
mization. Unfortunately, the OLS estimate of the model parameters is sen-
sitive to the presence of outliers,4 which has led to the design of various
alternatives. For example, according to Eq. (2), instead of minimizing
the sum of squared deviations, one might minimize the sum of absolute
deviations.

min
p

S ¼
Xn

i¼1

j yi � f ðxi; pÞj (2)

Computationally, the least absolute deviation (LAD) fit is more diffi-
cult than OLS. One approach4 is to resort to derivative-free methods, such
as the Nelder–Mead simplex algorithm.5 A more feasible approach, leading

1 M. L. Johnson and S. G. Frasier, Methods Enzymol. 117, 301 (1985).
2 M. L. Johnson and L. M. Faunt, Methods Enzymol. 210, 1 (1992).
3 M. L. Johnson, Anal. Biochem. 206, 215 (1992).
4 M. L. Johnson, Methods Enzymol. 321, 417 (2000).
5 J. A. Nelder and R. Mead, Computer J. 7, 308 (1965).
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to the same results, is to use iteratively reweighted least squares. This is
based on the fact that the LAD fit can be accomplished as a sequence of
weighted LS fits.

repeat min
p

S ¼
Xn

i¼1

wiðyi � ŷyiÞ2 (3)

In each step, the best-fit values ŷyi ¼ f ðxi; p̂pÞ from the previous LS fit are
used to recompute weights, such that wi ¼ 1=jyi � ŷyij. Throughout this
chapter the ‘‘hat’’ accent (^) represents ‘‘best-fit’’ quantities. After a suffi-
cient number of reweighted LS minimizations, the model parameters p
converge to the same values that would be obtained by LAD minimization
using, e.g., the simplex method.5

A similar iteratively reweighted least-squares procedure forms the basis
of the robust fit method discussed in this chapter.

Huber’s Method

The LAD fit has been used occasionally for data analysis in biochemical
kinetics.6 It does solve the outlier problem, but it is probably not ap-
propriate in most experimental situations arising in biochemistry. As had
been pointed out,4 the LAD fit does not provide maximum likelihood
parameter estimates (ML, or M estimates) if the underlying statistical dis-
tribution of random errors is Gaussian, according to probability density
function (4):

f ðxÞ ¼ 1

�
ffiffiffiffiffiffi
2�

p exp � 1

2

x� 

�

�  2
� �

(4)

The LAD fit does produce ML parameter estimates if (and only if) the
underlying error distribution function is a double-sided exponential, but
such distribution is seen only infrequently.6 On the other hand, the very
presence of outliers in real-world experimental data proves the fact that
strictly Gaussian error distribution is also unrealistic. What is the solution
to this quandary?

Huber7 proposed that random experimental errors arising in the
physical sciences could be described by using the contaminated Gaussian
distribution [Eq. (5)], where �(x) is the cumulative normal distribution:

6 I. B. C. Matheson, Comput. Chem. 14, 49 (1990).
7 P. J. Huber, ‘‘Robust Statistics.’’ John Wiley & Sons, New York, 1981.
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FðxÞ ¼ ð1� "Þ� x� 

�

�  
þ "� x� 


3�

�  
(5)

�ðxÞ ¼ 1ffiffiffiffiffiffi
2�

p
Z x

�1
e�y2=2dy (6)

According to Huber,7 " is typically in the range between 0.01 and 0.1,
which does not imply that between 1 and 10% of all experiments necessar-
ily are affected by gross errors, although this may be true in particular cir-
cumstances. The assumption that 0:01  "  0:1 merely implies the
existence of two distinct categories of measurements, the majority are
‘‘good’’ points with the standard deviation �, and a few are ‘‘bad’’ points
drawn from another Gaussian distribution, characterized by the standard
deviation several times larger (e.g., 3�).

Starting from similar distributional assumptions, and from the central
role of statistical influence functions,8,9 a rigorous theory of robust estima-
tion had been built.7,10–12 Regardless of the particular form of the influence
function, many computational algorithms for robust regression analysis
rely on iteratively reweighted least squares,13–16 as does Huber’s method
used here.

Huber’s influence function7 is constructed as follows. All ‘‘good’’ data
points (to be defined below) are assigned the same weight in the iteratively
reweighted series of LS estimations, exactly as they are in OLS. In contrast,
deviant or ‘‘bad’’ points are progressively deemphasized, by being assigned
progressively smaller weights according to Eq. (7). Here, a ‘‘good’’ data
point is one for which the standardized residual Ri, defined in Eq. (8), is
smaller in absolute value than a certain multiple of the estimated standard
deviation of fit. The cutoff criterion c serves as an empirical tuning
constant.

8 D. A. Belsley, E. Kuh, and R. E. Welsch, ‘‘Regression Diagnostics: Identifying Influential

Data and Sources of Collinearity.’’ John Wiley & Sons, New York, 1980.
9 R. D. Cook and S. Weisberg, ‘‘Residuals and Influence in Regression.’’ Chapman & Hall,

New York, 1982.
10 W. J. J. Rey, ‘‘Introduction to Robust and Quasi-Robust Statistical Methods.’’ Springer-

Verlag, New York, 1983.
11 F. R. Hampel, E. M. Roncheti, P. J. Rousseeuw, and W. A. Stahel, ‘‘Robust Statistics.’’

John Wiley & Sons, New York, 1986.
12 P. J. Rousseeuw and A. M. Leroy, ‘‘Robust Regression and Outlier Detection.’’ Wiley

Interscience, New York, 1987.
13 P. W. Holland and R. E. Welsch, Commun. Stat. Theory Methods A6, 813 (1977).
14 D. Coleman, P. Holland, N. Kaden, V. Klema, and S. C. Peters, ACM Trans. Math.

Software 6, 327 (1980).
15 J. O. Street, R. J. Carroll, and D. Ruppert, Am. Stat. 42, 152 (1988).
16 R. Heiberger and R. A. Becker, J. Comput. Graphics Stat. 1, 181 (1992).
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wi ¼
1

c=jRij
if jRij  c

if jRij > c

#
(7)

Ri ¼
yi � ŷyi

�̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hi

p (8)

It should be noted that different authors (including manual writers
for advanced statistical software packages, such as S-PLUS, SAS, and
MATLAB) variously refer to Ri either as standardized residuals or as
Studentized residuals. This confusion is clearly explained by Rawlings.17

Importantly, Huber established that with c ¼ 1:345, the M estimator so
defined is 95% efficient. By ‘‘efficiency’’ we mean the ratio of variances
from Huber’s M estimate relative to normal regression models, assuming
that the underlying error distribution is in fact normal.

The standard deviation of fit, �̂�, is estimated from the median absolute
deviation (MAD), computed as the median absolute deviation of the
residuals from their median. In Eq. (9), MAD is divided by the factor
relating the probable error (E50) to the standard deviation (SD):
E50 ¼ 0:6745� SD. Note that MAD relates to the mean square error
(MSE) as MAD � (MSE)1/2.

ŝs ¼ medfjðyi � ŷyiÞ �med yi � ŷyif gjg
0:6745

(9)

‘‘Hat’’ Matrix and Nonlinear Leverages

The quantity hi appearing in the denominator of Eq. (8) is the leverage
of the ith data point in the nonlinear least-squares regression. It is the diag-
onal element of the n� n ‘‘hat’’ matrix H defined in Eq. (10), where J is the
familiar n � m Jacobian matrix of first derivatives.18 Recall that m is the
number of adjustable parameters in the fitting model:

H ¼ JðJTJÞ�1JT (10)

fJgij ¼
@f ðxi; p̂pÞ
@pj

(11)

17 J. O. Rawlings, ‘‘Applied Regression Analysis—A Research Tool.’’ Wadsworth, Belmont,

CA, 1988.
18 M. L. Johnson, Methods Enzymol. 321, 425 (2000).
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In linear regression, the experimental values y and the least-squares fit
values ŷy are related through the simple matrix equation ŷy ¼ Hy, thus the
term ‘‘hat’’ matrix. The matrix H has interesting mathematical properties,
many of which are practically useful for checking the computation of
hi. For example, H is a symmetric and idempotent projection matrix, that
is, HH ¼ H. It has m eigenvalues equal to 1 and n � m eigenvalues equal
to 0. The trace is trfHg ¼ p, and for all diagonal elements, we must have
0  hi  1.

Because we are interested only in the diagonal elements of the hat
matrix, we can compute them directly by using Eq. (12), where ji is the
ith row vector in the Jacobian matrix J.

hi ¼ jiðJTJÞ�1jT
i (12)

The m � m matrix inverse (JT J)�1 is hardly ever computed as written.
Instead, in our work we utilize the QR decomposition19 J ¼ QR, where R
is an m � m upper triangular invertible matrix with positive entries in its
diagonal. Many good implementations of the QR decomposition algorithm
are available as canned software.20

Kinetic Model

The kinetics of tight-binding enzyme inhibition21,22 is described here by
Eq. (13), where Vb is the baseline or background reaction rate, V0 is the re-
action rate observed in the absence of inhibitor (‘‘negative control’’), [E]
and [I] are, respectively, the concentrations of the enzyme and the
inhibitor, and Ki is the apparent inhibition constant.23

v ¼ Vb þ V0

½E� � ½I� �Ki þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½E� � ½I� �KiÞ2 þ 4½E�Ki

q
2½E� (13)

Numerical Example

The experimental data in the first three columns of Table I represent
the micromolar concentration of an inhibitor (xi) and the corresponding
initial velocities of an enzyme reaction (yi).

19 D. C. Lay, ‘‘Linear Algebra and Its Applications.’’ Addison-Wesley, Reading, MA, 1994.
20 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and Brian P. Flannery, ‘‘Numerical Recipes

in C.’’ Cambridge University Press, Cambridge, 1992.
21 J. F. Morrison, Biochim. Biophys. Acta 185, 269 (1969).
22 J. W. Williams and J. F. Morrison, Methods Enzymol. 63, 437 (1979).
23 S. Cha, Biochem. Pharmacol. 24, 2177 (1975).
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Ordinary Least-Squares Fit

According to Huber’s method, the robust regression analysis always
begins with the ordinary least-squares fit, summarized in columns 4 through
7 in Table I. In the OLS fit to Eq. (13), the enzyme concentration
ð½E� ¼ 10 nMÞ and the background rate ðVb ¼ 0Þ were treated as fixed con-
stants; the apparent inhibition constant Ki and the control rate V0 were
treated as adjustable model parameters. The best fit values are shown in
the first row of Table II.

It is important to note the difference between ordinary residuals
ri ¼ yi � ŷyi and the standardized residuals Ri defined by Eq. (8). Examining
the ordinary residuals ri, one might be tempted to conclude that the fifth
data point (i ¼ 5) could be an outlier, because it has the largest absolute de-
viation. In contrast, the standardized residuals Ri suggest that the fourth
data point could be an outlier, because it is associated with the largest (in
absolute value) standardized residual.

This difference between ri and Ri is caused by the nonlinear leverages hi

for each data point. Note that the leverage for the fourth data point (0.57) is
more than twice the leverage for the fifth data point (0.26), which means that
in the iteratively reweighted least squares the fourth data point will be ini-
tially given larger weight ½1=ð1� 0:57Þ1=2 ¼ 1:52�, compared with the fifth
data point ½1=ð1� 0:26Þ1=2 ¼ 1:16�.

The leverages hi for data points 7 through 9 are practically zero, which
means that these data points contribute practically no useful information.

TABLE I

Results of Fit for Representative Enzyme Inhibitor
a

Data Least-squares fit Robust fit

i xi yi ŷyi ri Ri hi ŷyi ri Ri wi

1 0 133.0 143.4 10.4 �0.51 0.51 139.8 �6.8 �0.27 1

2 0.0031 143.6 135.5 8.1 0.35 0.36 136.8 6.8 0.24 1

3 0.0122 132.8 115.9 16.9 0.68 0.27 128.6 4.2 0.14 1

4 0.0488 34.0 71.3 �37.3 �1.95 0.57 103.3 �69.3 �2.98 0.12

5 0.195 65.8 27.0 38.8 1.55 0.26 57.2 8.6 0.28 1

6 0.781 13.5 7.6 5.9 0.2 0.03 20.3 �6.8 �0.19 1

7 3.125 3.4 2.0 1.4 0.05 0 5.6 �2.2 �0.06 1

8 12.5 1.1 0.5 0.6 0.02 0 1.5 �0.4 �0.01 1

9 50 0 0.1 �0.1 0 0 0.4 �0.4 �0.01 1

a Values in boldface represent the maximum absolute value in the given column.
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This indicates a suboptimal experimental design. Huber7 points out that
large values of hi should ‘‘serve as warning signals that the ith observation
may have a decisive, yet hardly checkable, influence. Values hi  0.2
appear safe, values between 0.2 and 0.5 are risky, and if we can control
the design at all, we had better avoid values above 0.5.’’

From this discussion it is clear the fourth data point is what Huber calls
a leverage point (i.e., a data point associated with a dangerously high value
of hi), whereas data points 7 through 9 are useless. This is yet another un-
pleasant consequence of one-size-fits-all experimental designs traditionally
seen in inhibitor screening. Most often, the same dilution ratio and the
same maximum concentration are used for all inhibitors on the same 96-
well plate, but if the inhibitors differ significantly in their inhibition con-
stants, this uniform design generates a large number of data points with
low information value.

Robust Fit

In the second stage of this analysis, the leverages hi computed during
the preliminary OLS fit were used in the iteratively reweighted OLS
regression, employing the default value of Huber’s tuning constant
(c ¼ 1:345). After several repeated OLS fits, the adjustable parameters
converged to the values listed in the third row of Table II. The results of
the fit are shown graphically in Fig. 1.

Note in Table I that the Huber reweighted regression ended with
assigning unit weights (that is, giving the ordinary least-squares treatment)

TABLE II

Results of Fit Using Various Analysis Methods
a

Method Ki (nM) V0 nw< 1

P
wi

Least squares 43.3 
 25.1 143.4 
 15.8 0 9

Huber (c ¼ 10) 43.3 
 25.1 143.4 
 15.8 0 9

Huber (c ¼ 1.345) 131.0 
 47.0 139.8 
 8.3 1 8.12

Huber (c ¼ 1) 68.5 
 17.2 151.4 
 4.4 3 6.23

Huber (c ¼ 0.1) 75.2 
 3.2 149.8 
 1.2 9 2.67

Huber (c ¼ 0.01) 73.5 
 3.1 150.7 
 1.2 9 0.63

Huber (c ¼ 0.001) 71.1 
 0.2 151.9 
 1.3 9 0.14

Absolute deviations (simplex) 77.0 148.7 — —

Point deletion 146.1 
 23.0 140.8 
 3.7 0 8

a nw< 1 is the number of data points for which the final weight [Eq. (7)] was lower than

unity;
P

wi is the sum of all final weights in the iteratively reweighted least squares.
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to all data points except data point 4, which is assigned a small weight
(wi ¼ 0:12). This result strongly suggests that the fourth data point is an
outlier. Its standardized residual is almost equal to three (Ri ¼ 2:98), which
is yet another strong indication that the data point is affected by gross
error.

Some authors8 recommend that data points with Ri > 2 should simply
be deleted. Others recommend a two-stage robust regression, starting with
Huber’s influence function (7) followed by Tukey’s biweight scheme (14),
where the 95% asymptotic efficiency of the standard normal distribution is
achieved with c ¼ 4:6851.

Fig. 1. Top: The open circles are data points (inhibitor concentrations versus initial

velocities) for a particular enzyme inhibitor. The left most data point is the negative control,

observed at zero inhibitor concentration. The thicker, solid curve represents the robust fit to

rate Eq. (13) by using Huber’s method with tuning constant c ¼ 1:345. The thinner, dashed

curve represents the results of the ordinary least-squares fit after the fourth data point (log[I]

� �7.3) was deleted. Bottom: The residuals for data points that were assigned the full unit

weight (wi ¼ 1) in Huber’s method are shown as solid circles. The residual shown as an open

circle belongs to the (single) data point, which ended up with less than unit weight (w4 ¼ 0:12)

in the iteratively reweighted least-squares fit.
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wi ¼
0 if jRij > c

½1� ðRi=c2Þ�2 if jRij  c

#
(14)

Note that Tukey’s outliers are given zero weights, and thus are effec-
tively excluded from analysis. We have experimented with Tukey’s bi-
weight and found that, too often, it deleted too many data points from
our small data sets. Instead, in the context of inhibitor screening, we formu-
lated a heuristic policy for data exclusion as follows. If and only if the Hu-
ber method produces a single data point with the final weight wi < 1, this
single data point is deleted (by being assigned wi ¼ 0), and the analysis is
repeated one last time as ordinary least squares. For our example inhibitor,
where this condition does apply, the results are shown graphically as the
thin dashed curve in Fig. 1.

The solid and dashed curves in Fig. 1 do appear pleasingly similar, sug-
gesting that Huber’s fit with c ¼ 1:345 and OLS fit with the fourth data
point deleted are consistent with each other. The best-fit values of adjust-
able parameters, shown for the OLS fit with deletion in the last row in
Table II, are also comparable for the two methods, although they are not
identical. The difference is caused by the outlier point being assigned a
nonzero weight, w4 ¼ 0:12, in Huber’s method. However, the difference
between Ki ¼ 131 nM (Huber) and Ki ¼ 146 nM (OLS with deletion) is
only about 10%, whereas the OLS method with full data set produced an
inhibition constant (Ki ¼ 43 nM) that is off by more than a factor of three.
Thus, the application of Huber’s method alone produced two desirable
effects. First, it reduced the systematic error in Ki due to a single outlier,
from 330 to 10%. Second, it clearly diagnosed the presence of this outlier
so it could be deleted.

Variations in Huber’s Tuning Constant

Although the particular value c ¼ 1:345 for Huber’s tuning constant is
rooted in statistical theory (it has been chosen because it leads to an M es-
timate that is 95% efficient), it is important to examine in practice how
variations in c might affect the outcome of robust regression analyses in
our particular experimental setting.

On the basis of theoretical considerations [see Eq. (7)], we can predict
that as c becomes very large all data points will be assigned unit weights
and the Huber regression turns into OLS. On the other hand, as c becomes
small, we expect the Huber algorithm to resemble the LAD fit, because the
weighting factors in the influence function (7) simply become reciprocal
absolute residuals.

[15] practical robust fit of enzyme inhibition data 375



Figure 2 and the fourth row in Table II show the results of Huber re-
gression with c ¼ 1:0. Although this is only marginally lower than the rec-
ommended value c ¼ 1:345, the results of fit are strikingly different. As is
illustrated by the bottom panel in Fig. 2, the robust fit is dominated by
six of the nine data points, which are assigned unit weights. Data points
1, 4, and 5 are deemphasized with weights w1 ¼ 0.11, w4 ¼ 0.03, and
w5 ¼ 0.10. In other words, the Huber fit discovered too many outliers.

Further decreasing c to 0.1 created another problem. With c ¼ 0.1 or
lower, no points were assigned full weights in reweighted least squares.
The best-fit values of model parameters remained approximately the same
between c ¼ 0.1 and c ¼ 0.001, but the variances of the model parameters
decreased drastically. This is expected from theory, because the Huber M
estimate loses asymptotic efficiency as c moves away from its 95% efficient
value of 1.345. Thus in any software system in which the Huber tuning

Fig. 2. Top: The thicker, solid curve represents the robust fit to rate Eq. (13) by using

Huber’s method with tuning constant c ¼ 1:0. The thinner, dashed curve represents the results

of the least-absolute deviation fit [Eq. (2)] using the Nelder–Mead simplex algorithm.5,20

Bottom: For explanation of solid and open circles, see Fig. 1. Please note that the fit is

completely dominated by six of the nine data points.
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constant c is adjustable by the user (e.g., SAS, S-PLUS, MATLAB, or in
the software built by us for inhibitor screening), one must proceed with
caution. Lowering c might not only pick up too many ‘‘outliers’’ if the data
set is small, it will also unrealistically shrink parameter variances.

As is expected from theoretical considerations, when we increased the
tuning constant c above its 95% efficient value (c ¼ 1:345), the algorithm
simply turned into OLS. This is seen from Fig. 3 and the second row in
Table II.

In some respects, these results are disconcerting. At least for this par-
ticular inhibitor, decreasing c only slightly (in fact, from 1.345 to 1.3; see
Fig. 4) has led to the false identification of too many ‘‘outliers.’’ In contrast,
increasing c eventually missed the single outlier altogether. An important
question then concerns how wide a range c can have for the Huber method
to remain useful for analyzing data sets as small as ours are (nine data
points, two to four adjustable parameters).

Fig. 3. Top: The thicker, solid curve represents the robust fit to rate Eq. (13) by using

Huber’s method with tuning constant c ¼ 10:0. The thinner, dashed curve represents the

results of the ordinary least-squares fit [Eq. (1)]. Bottom: For explanation of solid and open

circles, see Fig. 1. Please note that two regression analyses yielded exactly identical results, as

the two best-fit curves are indistinguishable.
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To answer this question, we have varied c systematically between 0.1
and 10.0, stepping by �c ¼ 0:1 (100 different values), and performed the
Huber regression at each point. The results are summarized in Fig. 4.

It is encouraging that the range of c values, within which the Huber al-
gorithm successfully detected only a single data point with the final weight
wi < 1, is relatively wide (c ¼ 1:345 through c ¼ 5:6). Unfortunately, as the
weight of this data point increases, the outlier progressively distorts the
best-fit value of the inhibition constant.

Also note that the default value of the tuning constant (c ¼ 1:345) pre-
cariously sits at the lower end of this interval. Thus, perhaps a minuscule
change in the data could cause the algorithm to tip over that edge, and sug-
gest falsely that the data set contains three ‘‘outliers’’ instead of one. These
are serious challenges for the designer and administrator of a software

Fig. 4. Top: Variation in the best-fit value of the apparent inhibition constant Ki depending

on the value of the Huber tuning constant c in Eq. (7). The large solid square is the value

obtained at the default recommended value, c ¼ 1:345. Bottom: The solid curve shows the sum

of weights
Pn

i¼1 wi obtained for the nine data points (n ¼ 9) in the Huber regression,

depending on the value of c. The dashed curve is the sum of all weights while counting only

data points with full weights (wi ¼ 1).
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system designed for automatic, robust, high-throughput analysis of enzyme
inhibition data.

Implementation Notes

In the course of our ongoing work on new methods for automated data
analysis in preclinical screening,24–26 we have tested Huber’s robust regres-
sion method on tens of thousands of enzyme inhibitors. The efficiency of
the method in handling occasional outliers was good. This is in contrast
with the OLS fit, where data points with large deviations have unduly large
influence, and with the LAD fit,4,6 where data points with small deviations
dominate the fitted curve.

The latter statement is consistent with the fact that, in LAD regression
implemented as iteratively reweighted least squares, the weights are 1/jyi �
ŷij, implying that a data point with zero deviation has infinite weight. In
working with relatively small data sets and with nonlinear fitting models,
this feature of LAD is particularly dangerous. A sufficiently flexible non-
linear model with four parameters will always go through four data points,
completely ignoring the remaining data, which become deemphasized in
LAD fit.

The practical success of Huber’s method applied even to relatively
small data sets, such as those arising in preclinical screening, is due to the
fact that the method behaves as OLS does if the data are ‘‘good,’’ but at the
same time it gives the LAD treatment to suspected outliers, while main-
taining 95% asymptotic efficiency. The following are a few of many pos-
sible implementation issues, which were encountered in translating the
theory of Huber’s regression into a practically useful software system.

Replicated Measurements

Huber’s robust regression method is suitable for the analysis of either
replicated or nonreplicated data. However, when the number of replicates
is small, it is best not to automatically average these replicates (e.g., dupli-
cates) and then analyze the averaged data. Consider the hypothetical
example where the replicated initial velocities are [100, 99], [81, 79], [62,
30], [40, 38], [19, 21], and so on. These are 10 data points, only one of which

24 P. Kuzmič, S. Sideris, L. M. Cregar, K. C. Elrod, K. D. Rice, and J. W. Janc, Anal. Biochem.

281, 62 (2000).
25 P. Kuzmič, K. C. Elrod, L. M. Cregar, S. Sideris, R. Rai, and J. W. Janc, Anal. Biochem. 286,

45 (2000).
26 P. Kuzmič, C. Hill, M. P. Kirtley, and J. W. Janc, Anal. Biochem. 319, 372 (2003).
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is clearly an outlier. By averaging we obtain five data points [99.5], [80],
[46], [39], [20], among which the outlier would be more difficult to detect
if the fitting model is nonlinear.

In this hypothetical example, a better alternative to robust regression
might be weighted least squares (WLS) fit, where the weighting factors
are reciprocal SDs from each replicate. Our experience shows that
WLS with a small number of replicates can be treacherous for the following
reason. If the inhibitor dose–response curve contains only a small number
of (replicated) data points, it is possible that one particular duplicate might
be fortuitously accompanied by a small standard error, much smaller than
the standard errors from other averages. In such a case, the particular data
point would be assigned a disproportionately large weight, and conse-
quently it might unduly influence the regression. In a production software
system, the user or the administrator should have a choice to decide
whether to use robust regression or WLS, but preferably not both at the
same time.

Outliers versus Deviations from Fitting Model

Practical experience with Huber’s regression shows that in many cases
the method will assign weights smaller than one to more than one data
point, and sometimes even to all data points in the given dose–response
curve. Obviously not all data points can be ‘‘outliers’’ if our distributional
assumption [Eq. (5)] is correct. Rather, too many ‘‘outliers’’ (data points
with wi < 1) simply suggest that the fitted model is incorrect.

In such cases, a sensible software system would disregard the robust fit
and revert to OLS with a suitable warning. Alternately, if only one of the
weights is much smaller than the others, it might make sense to delete the
corresponding data point (by setting its wi ¼ 0) and run one final OLS fit. A
further refinement of this policy would be to take into account the total
number of data points with wi < 1, or the sum of weights for the entire data
set (see Fig. 4).

One might be willing to accept the results of Huber’s robust regression
analysis only if the majority of data points end up with wi ¼ 1, or otherwise
conclude that the model is inadequate, issue a warning, and end with OLS
as the last resort. However the software system is constructed, it is impor-
tant to avoid situations illustrated in Fig. 2, where few data points com-
pletely dominate the regression while the remaining data points are
effectively excluded through weighting. Again, in a production software
system, the user or the administrator should be able to control these
policies.
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Conclusions

We have discussed several mathematical quantities that should be of
interest to the biochemical data analyst, but, to our knowledge, are hardly
ever mentioned in the mainstream biochemical literature. First, stan-
dardized residuals defined by Eq. (8) are significantly more informative
than ordinary residuals (y � ŷyi). Standardized residuals are more helpful
than ordinary residuals not only for outlier detection, but also for model
diagnostics.

Second, nonlinear leverages, which are diagonal elements of the ‘‘hat’’
matrix H [Eq. (10)], are useful for quickly assessing the presence of unduly
influential data points (whether outliers or not) and the optimality of ex-
periment design. If, after a least-squares fit, we find that a particular data
point is associated with hi > 0:7, it means that this is a leverage point.
Small, random changes in this single data value might have a large effect
on model parameters, which is undesirable.

On the other hand, if we find that too many data points are associated
with zero leverages (hi ¼ 0), it means these data points were wasted, be-
cause they contribute no useful information at all about the model param-
eters. In such case, one should seriously consider improving the
experimental design (in the case of inhibitor screening, the layout of con-
centrations) for the next round of experiments.

Both standardized residuals and leverages play a role in the Huber’s
method of robust regression analysis, implemented as iteratively re-
weighted least squares. We found that it is a good alternative to ordinary
least squares when the goal is to exclude a single gross outlier from a rela-
tively small data set. This approach can increase productivity in preclinical
screening laboratories, faced with determining inhibition constants for
thousands of enzyme inhibitors in a single project.

Kinetic data analysis does present unique challenges in an extensively
automated and robotized enzymology laboratory, where success means a
smooth flow of the massive data stream connecting microtiter plate readers
with structure–activity databases. At the present time, no technology can
completely replace a well-qualified enzymologist supervising the process.
However, our practical experience shows that a software system judiciously
implementing Huber’s variant of robust regression does help in the specific
task of objectively identifying grossly outlying data points.
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