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A generalized numerical approach to rapid-equilibrium enzyme
kinetics: Application to 17�-HSD

Petr Kuzmič
BioKin Ltd., 1652 South Grand Avenue, Suite 337, Pullman, WA 99163, USA

Abstract

A generalized numerical treatment of rapid-equilibrium enzyme kinetics is presented. This new approach relies on automatic computer derivation
of the underlying mathematical model (a system of simultaneous nonlinear algebraic equations) from a symbolic representation of the reaction
mechanism (a system of biochemical equations) provided by the researcher. The method allows experimental biochemists to analyze initial-rate
enzyme kinetic data without having to use any mathematical equations. An illustrative example is based on the inhibition kinetics of 17�-
hydroxysteroid dehydrogenase type 5 by a class of natural compounds. A computer implementation of the new method, a newly modified software
package DYNAFIT [Kuzmič, P., 1996. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem.
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. Introduction

The task of mechanistic enzyme kinetics is to compare avail-
ble experimental data with the predictions of kinetic theory,
nd make conclusions about the plausibility of the underlying
echanistic model. Often the experimental data are initial

eaction rates of an enzyme catalyzed process, in dependence
n the total concentrations of reactants. The theoretical model
raditionally is an algebraic rate equation, based either on
he rapid-equilibrium approximation (Segel, 1975, Chapters
–8) or on the steady-state approximation (Segel, 1975,
hapter 9).

This paper utilizes a generalized approach to rapid-
quilibrium enzyme kinetics, which simultaneously solves two
roblems. First, the classical enzyme kinetic formalism is re-
tricted to experimental conditions, under which the concentra-
ion of the enzyme catalyst is negligibly small. In our generalized
pproach, this restriction is removed. This generalization cre-
tes the possibility of investigating many practically important
ystems, for which the classical theory is not applicable. For ex-
mple, when two “tight-binding” inhibitors (Williams and Mor-

E-mail address: pksci01@biokin.com.

rison, 1979) are present simultaneously, a classical rate equation
cannot be derived at all (Kuzmič et al., 1992).

The second difficulty with traditional enzyme kinetics is that,
even in those cases where a classical rate equation does exist,
it is often extremely complicated. For example, the “random
Bi–Bi” steady-state mechanism of bisubstrate enzymes leads to
a rational polynomial rate equation containing 48 terms in the
denominator (Segel, 1975, p. 469). Rapid-equilibrium mecha-
nisms lead to somewhat simple algebraic rate equations, but their
complexity can still be daunting to a nonspecialist.

In our approach, no algebraic manipulations are involved
at all. The mathematical model for an arbitrarily complex
mechanism is represented simply by two matrices, namely,
the formula matrix (Smith and Missen, 1982) and a newly
introduced stability matrix. The formula matrix expresses the
composition of complex molecular species in terms of compo-
nents. The stability matrix describes the total stability constants
of molecular complexes, in terms of binary dissociation
constants.

As an illustrative example, we shall consider a reaction
mechanism proposed by Krazeisen et al. (2001) for the
inhibition of 17�-hydroxysteroid dehydrogenase type 5 by
phytoestrogens. It has been hypothesized that the phytoestrogen
inhibitors bind only to the cofactor site on the enzyme, but not
URL: http://www.biokin.com. to the substrate site. We present a heuristic simulation study of
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a suitable experimental design, which could be used to prove
or disprove the proposed structural-binding mode.

2. Methods

This section summarizes mathematical concepts that were used to
formulate our generalized numerical approach to rapid-equilibrium en-
zyme kinetics.

2.1. Theory

We assume that the enzymatic reaction mechanism consists of nR

rapid-equilibrium steps, in which the ligands (substrates, inhibitors or
activators) reversibly bind to the enzyme. Each ligand-binding step
is characterized by the corresponding dissociation constant Ki (i =
1, 2, . . . , nR). In addition, the reaction mechanism contains a single
slow step (either reversible or effectively irreversible), in which bond
breaking or bond making occurs. These are the usual assumptions of
classical rapid-equilibrium enzyme kinetics (Segel, 1975, Chapters 2–
8). However, unlike in the classical treatment, we do not assume that
the enzyme catalyst is present in a negligibly small amount.

We shall further assume that all molecular species participating in
the reaction mechanism can be categorized into nE molecular com-
ponents (elements) and nC molecular complexes. The total number of
molecular species is nS = nE + nC. The composition of molecular com-
plexes is described by the formula matrix F (Smith and Missen, 1982).
The formula matrix has nE rows and nS columns. The first nE columns
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2.1.2. Multidimensional Newton–Raphson method
The theory of the iterative Newton–Raphson method in mul-

tiple dimensions is described in detail elsewhere (Press et al.,
1992, pp. 379–383). When this general theory is applied to rapid-
equilibrium enzyme kinetics, we solve a system of nE nonlinear
algebraic Eq. (3) for the concentrations of component species at
equilibrium.

We begin with an initial estimate of the solution vector, and then
refine this estimate in a series of iterations according to Eq. (4), where
α is a heuristic parameter (usually α = 1). In the mth iteration, the
correction vector δc(m) is found by solving a nE × nE linear algebraic
system (5), where J is the Jacobian matrix of derivatives defined by Eq.
(7). The iterations are repeated until the correction vector δc becomes
sufficiently small (see below).

c(m+1) = c(m) + α× δc(m) (4)

J(m) · δc(m) = f (m) (5)

f
(m)
i =

nS∑
j=1

Fi,jc
(m)
j −

nS∑
j=1

Fi,j c̃j; i = 1, 2, . . . , nE (6)

J
(m)
i,j =

nS∑
k=1

Fj,kFi,k

c
(m)
k

c
(m)
j

; i, j = 1, 2, . . . , nE (7)

2.1.3. First derivatives of equilibrium concentrations
The equilibrium composition of complex biochemical mixtures de-
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epresent a unit matrix. Matrix elements in the subsequent nC columns
ontain positive whole numbers, corresponding to the composition of
ach molecular complex in terms of components.

The total stability constants (Beck and Nagypál, 1990, p. 12) of
ach molecular complex are expressed in terms of the binary dissocia-
ion constants, in the form of the stability matrix B. Thus, the stability
atrix relates to the presumed reaction mechanism. The matrix has nR

ows and nS columns. The first nE columns, corresponding to the com-
onent species, are filled with zeros. Matrix elements in the subsequent
C columns are either zero or minus one, depending on the reaction
echanism. An illustrative example is given in Section 3 below.

.1.1. Mass-conservation law
According to the mass-action law, the concentration of each species

t equilibrium is given by Eq. (1), where βj is the is the total stability
onstant for the formation of the jth molecular complex from compo-
ent species. The stability constant is defined in terms of the constants
ccording to Eq. (2), where Bi,j are elements of the stability matrix.
he mass-conservation law for component species is expressed in the
ystem of nE simultaneous nonlinear algebraic Eq. (3) for nE unknowns
ci, i = 1, 2, . . . , nE), where the “tilde” accent c̃ represents the total or
nalytic concentration of component species.

j = βj

nE∏
i=1

c
Fi,j

i ; j = 1, 2, . . . , nS (1)

j =
nR∏
j=1

K
Bi,j

i ; j = 1, 2, . . . , nS (2)

nS∑
j=1

Fi,jcj −
nS∑
j=1

Fi,j c̃j = 0; i = 1, 2, . . . , nE (3)
ends on two types of state parameters, namely, the dissociation con-
tants Ki (i = 1, . . . , nR) and the total concentrations of components
pecies c̃i (i = 1, . . . , nE). The first derivatives of component concen-
rations with respect to the given state parameter p are obtained by
olving the system of simultaneous linear Eq. (8).

⎛
⎜⎝

J1,1 · · · J1,nE

...
. . .

...

JnE,1 · · · JnE,nE

⎞
⎟⎠
⎛
⎜⎜⎝

∂c1
∂p

...
∂cnE
∂p

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

∂f1
∂p

...
∂fnE
∂p

⎞
⎟⎟⎠ (8)

The first derivatives of complex concentrations are obtained as is
hown in Eq. (9). (In the notation i = nE + 1, . . . , nS it is assumed
hat the species are ordered in such a way that the components are
ollowed by the complexes.) The final formulas (10)–(13) are derived
n Appendix A.1.

∂cj

∂p
= ∂

∂p

{
βj

nE∏
i=1

c
Fi,j

i

}
; j = nE + 1, . . . , nS (9)

∂fi

∂Ku

=
nS∑
j=1

Fi,j

Bu,jcj

Ku

; i = 1, · · · , nE (10)

∂cj

∂Ku

= cj

(
nE∑
i=1

Fi,j

∂ ln ci

∂Ku

+ Bu,j

Ku

)
; j = nE + 1, · · · , nS (11)

∂fi

∂c̃u

= −
nS∑
j=1

Fi,jδu,j; i = 1, · · · , nE (12)

∂cj

∂c̃u

= cj

nE∑
i=1

Fi,j

∂ ln ci

∂c̃u

; j = nE + 1, · · · , nS (13)
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2.2. Implementation

A practical implementation of the theoretical principles described
above involves (i) making the initial estimate of equilibrium concentra-
tions, (ii) checking the physical meaning of intermediate results, (iii)
utilizing a suitable convergence criterion and (iv) a convenient way of
solving the linear system (5) to facilitate the computation of derivatives.
The computational algorithm is controlled by three empirical parame-
ters, γ1–γ3, which are defined below.

2.2.1. Initial estimate
In a closely related unidimensional iterative method we have de-

scribed previously (Kuzmič, 1998), the initial estimate of component
concentrations is set to the corresponding total or analytic concentra-
tions, while the initial estimate of complex concentrations is set to zero.
Such choice is not practical in the multidimensional Newton–Raphson
method, because some elements of the Jacobian matrix (7) could not
be evaluated (division by zero). Thus, according to Eq. (14), initial es-
timates of equilibrium concentrations are always positive numbers. If
the analytic concentration of a species (either a component or a com-
plex) is nonzero, that value is also used as the initial estimate of the
equilibrium concentration. On the other hand, if the analytic concen-
tration of a species is zero, a small fraction of the smallest analytic
concentration is used. A suitable value of the empirical parameter is
γ1 = 0.0001.

c
(0)
i =

{
c̃i, if c̃i �= 0

; i = 1, · · · , nS (14)
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2.2.5. Initial rate equation
The final result of the computation is the initial rate of an enzyme

reaction, obtained simply by adding elementary rate terms for the single
(possibly reversible) slow step in the reaction mechanism.

For example, if the slow (chemical) step in the reaction mechanism
is E.Skf→E.P, the overall reaction rate is defined as v ≡ kf × cE.S, where
cE.S is the concentration of E.S at equilibrium. If the slow (chemical)
step is reversible, so that the reaction mechanism additionally contains
the step E.Skb←E.P, the overall reaction rate is defined as v ≡ kf ×
cE.S − kb × cE.P, where cE.P is the concentration of E.P at equilibrium.

This definition of initial rates is exactly identical to the classical for-
malism of rapid-equilibrium enzyme kinetics (Segel, 1975). However,
an important generalization of the classical treatment is that we do not
insist on the enzyme catalyst being present in negligibly small amounts,
compared to all ligands (substrates, inhibitors and activators).

2.2.6. Implementation in the software package DYNAFIT
The formalism and algorithms described above were incorpo-

rated into a recently updated software package DYNAFIT (Kuzmič,
1996), which is freely available to all academic researchers at
http://www.biokin.com/dynafit.

3. Results

A practical application of our generalized rapid-equilibrium
enzyme kinetic formalism is illustrated here on a reaction mech-
anism proposed by Krazeisen et al. (2001) for the inhibition of
1
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γ1 min(c1, c2, . . . , cnS ), if c̃i = 0

.2.2. Positivity of the solution
In each iteration, the corrections, δc(m) in Eq. (5), are checked for

hysical meaning. In particular, it must be ensured that all component
oncentrations remain positive. If the proposed correction is too large
nd negative, the component concentration is set to a certain fraction
f the current estimate. Thus, the (m+ 1)th estimate of the equilibrium
oncentrations is made according to Eq. (15). A suitable value of the
mpirical parameter is γ2 = 0.1.

=
{

1 if δc
(m)
i < c

(m)
i

γ2c
(m)
i if δc

(m)
i ≥ c

(m)
i

; i = 1, · · · , nE (15)

.2.3. Convergence criterion
In the final stage of each iteration, convergence is checked using both

n absolute and a relative termination criterion. The iterative procedure
s terminated when both the absolute and the relative adjustments of the
quilibrium concentration are smaller than prescribed limits. A typical
alue for the relative error tolerance is eight significant digits (γ3 =
0−8).

.2.4. Computation of derivatives
The first derivatives of equilibrium concentrations with respect to

quilibrium constants and total concentrations are computed directly,
n a single step, after the Newton–Raphson method has converged. The
olution of the linear system (8) is best accomplished by using the
aussian elimination (Stoer and Bulirsch, 1991) or a similar matrix
ecomposition technique. The Gaussian factors obtained in the last it-
ration of the Newton–Raphson method are then re-used in a single
ack-substitution step. These tasks are suitably encoded by the rou-
ines DGEFA and DGESL from the LINPACK collection of computer
rograms (Dongarra et al., 1979).
7�-hydroxysteroid dehydrogenase type 5 by phytoestrogens.
e will first describe how an appropriate mathematical model

or the inhibition mechanism can be obtained without any use
f algebra. Then, we conduct a heuristic simulation study, to de-
ign an optimal experiment for discrimination between alternate
olecular mechanisms.
Consider the reaction mechanism shown in Scheme 1. The

nzyme E first combines with the cofactor C, and subsequently
ith the steroid substrate S. The inhibitor presumably binds at

he cofactor site only. Therefore, in the reaction mechanism we
ill find both the complex EI (binding of I to the free enzyme),

nd the complex EIS (binding of steroid substrate to the enzyme–
nhibitor complex).

.1. Mathematical model for the inhibition of 17β-HSD-5

The reaction mechanism in Scheme 1 contains four rapid-
quilibrium (reversible) steps, characterized by binary equi-
ibrium constants Kc, Ks, Ki and Ksi. Each binary equilib-
ium constant is defined as a dissociation constant, e.g., Ki ≡
E × cI/cEI, where cE, cI and cEI are concentrations at equi-

Scheme 1.

http://www.biokin.com/dynafit
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librium. In addition, the reaction mechanism contains a single
(irreversible) chemical step, characterized by rate constant kcat.
Thus, the reaction rate will be calculated as is shown in Eq. (16),
where cECS is the equilibrium concentration of the complex ECS.

v = kcat × cECS (16)

The reaction mechanism contains four binary equilibrium
steps and eight molecular species that participate in them (note
that the product P does not participate in rapid-equilibrium
steps). Therefore, the stability matrix B, defined in Eq. (17),
contains four rows and eight columns. Zero elements are repre-
sented by period (.) for clarity. The entries in matrix B express
the total stability constants of molecular complexes in terms
of binary dissociation constants. For example, the column la-
beled ECS gives the total stability constant of complex ECS,
βECS = K−1

c K−1
s = 1/KcKs.

B =

C S E I EC ECS EI EIS

Kc

Ks

Ki

Ksi

⎛
⎜⎜⎜⎝

. . . . −1 −1 . .

. . . . . −1 . .

. . . . . . −1 −1

. . . . . . . −1

⎞
⎟⎟⎟⎠ (17)

The formula matrix F is defined by Eq. (18). Each column
describes the composition of a particular molecule in terms of
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fE : 0 = cE + cEcC

Kc

+ cEcCcS

KcKs

+ cEcI

Ki

+ cEcIcS

KiKsi

− c̃E (21)

fI : 0 = cI + cEcI

Ki

+ cEcIcS

KiKsi

− c̃I (22)

The Jacobian matrix elements for the example problem, ap-
pearing on the left-hand side of Eq. (5), is obtained by differ-
entiating the nonlinear algebraic system (19)–(22) with respect
to the state variables (equilibrium concentrations of component
species). The resulting matrix elements, automatically generated
by the computer, are shown in Eqs. (23)–(38).

JC,C = 1+ cE

Kc

+ cEcS

KcKs

(23)

JC,S = cEcC

KcKs

(24)

JC,E = cC

Kc

+ cCcS

KcKs

(25)

JC,I = 0 (26)

JS,C = cEcS

KcKs

(27)

JS,S = 1+ cEcC

KcKs

+ cEcI

KiKsi

(28)

JS,E = cCcS

KcKs

+ cIcS

KiKsi

(29)

J

J

J

J

J

J

J

J

J
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omponent species. Thus, for example, the rightmost column in
he matrix F, representing the complex EIS, contains unit entries
or the component species E (fourth row), I (fifth row) and S
second row). Note again that the product P does not appear on
he list of molecular species, because it does not participate in
ny rapid-equilibrium steps.

=

C S E I EC ECS EI EIS

C

S

E

I

⎛
⎜⎜⎜⎝

1 . . . 1 1 . .

. 1 . . . 1 . 1

. . 1 . 1 1 1 1

. . . 1 . . 1 1

⎞
⎟⎟⎟⎠ (18)

The matrices B and F, together with the rate Eq. (16), com-
letely represent the mathematical model for the inhibition
echanism in Scheme 1. These matrices, the numerical val-

es of kinetic constants, and the total (analytic) concentrations
f species are required for a suitable computer algorithm to cal-
ulate the theoretical reaction rate. The matrices B and F can
e either supplied in an explicit form or they can be constructed
utomatically by a computerized parser, starting from textual
ata as is shown in Appendix A.2.

To generate automatically the nonlinear algebraic system for
quilibrium concentrations of component species, the matrices B
nd F are used to form the right-hand sides of Eq. (5), essentially
s the mass balance equations for all component species, (19)–
22).

C : 0 = cC + cEcC

Kc

+ cEcCcS

KcKs

− c̃C (19)

S : 0 = cS + cEcCcS

KcKs

+ cEcIcS

KiKsi

− c̃S (20)
S,I = cEcS

KiKsi

(30)

E,C = cE

Kc

+ cEcS

KcKs

(31)

E,S = cEcC

KcKs

+ cEcI

KiKsi

(32)

E,E = 1+ cC

Kc

+ cCcS

KcKs

+ cI

Ki

+ cIcS

KiKsi

(33)

E,I = cE

Ki

+ cEcS

KiKsi

(34)

I,C = 0 (35)

I,S = cEcI

KiKsi

(36)

I,E = cI

Ki

+ cIcS

KiKsi

(37)

I,I = 1+ cE

Ki

+ cEcS

KiKsi

(38)

.2. Convergence of the Newton–Raphson method

The convergence properties of the multidimensional
ewton–Raphson method are illustrated in Table 1. In this exam-
le, the simulated values of equilibrium constants and rate con-
tants were Kc = 10 �M, Ks = 20 �M, Ki = 1 �M, Ksi =
0 �M and kcat = 10 s−1. The simulated total concentrations
ere c̃E = 0.01 �M, c̃S = c̃I = 10 �M and c̃C = 100 �M.
In the first iteration, the estimated equilibrium concentra-

ions of a component species were set to their analytical con-
entrations, and the equilibrium concentrations of all molecular
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Table 1
Convergence of the Newton–Raphson method in a simulation problem representing the inhibition of 17�-hydroxysteroid dehydrogenase type 5 by phytoestrogens

Equilibrium concentrations Iteration

1 2 3 4 5

cE (nM) 10 9.996002 0.326171 0.322697 0.322697
cC (�M) 100 99.99999 99.99513 99.99516 99.99516
cS (�M) 10 9.999998 9.996796 9.996774 9.996774
cI (�M) 10 9.999998 9.995195 9.995162 9.995162
cEC (nM) 0.001 99.960014 3.261553 3.226816 3.226816
cECS (nM) 0.001 49.979997 1.630254 1.612888 1.612888
cEI (nM) 0.001 99.959996 3.260145 3.225412 3.225412
cEIS (nM) 0.001 49.979988 1.629550 1.612186 1.612186

Note that the fifth iteration produced essentially identical equilibrium concentrations, within six significant digits, compared with the previous iteration.

complexes were set to a very small value, using γ1 = 0.0001 ac-
cording to Eq. (14). In four iterations, the equilibrium concentra-
tions of all molecular species converged to within six significant
digits. The equilibrium concentration of the reactive complex
ECS was cECS = 1.612888 nM, which gives v = kcat × cECS =
16.12888 nM/s.

3.3. Simulated data

We used the generalized matrix formalism to simulate
pseudo-experimental data conforming to the proposed molec-
ular mechanism. According to Krazeisen et al. (2001), 17�-
hydroxysteroid reductase type 5 is inhibited by phytosteroids
such that the inhibitor binds only to the cofactor site, but
not to the steroid substrate site. This is represented by the
[mechanism] portion of the DYNAFIT script shown in
Appendix A.2. The program automatically constructed matri-
ces B and F, defined for this mechanism in Eqs. (17) and (18),
respectively.

The presumed values of kinetic constants were Kc = 10 �M,
Ks = 20 �M, Ki = 1 �M, Ksi = 20 �M and kcat = 10 s−1.
The inhibitor concentrations were varied between 1 and 16 �M,
stepping logarithmically by a factor of 2. Altogether ten rounds
of simulations were performed, in which either the steroid sub-
strate or the cofactor was held at a constant concentration, equal
t
(
o

1
s
a
t

seven different substrate concentrations and six inhibitor con-
centrations. Pseudo-experimental initial velocities were simu-
lated by assuming 1% standard deviation of random noise, rel-
ative to the highest velocity in each given data set.

3.4. Model discrimination analysis

Each simulated data set was subjected to least-squares regres-
sion analysis, using four candidate mechanistic models. These
four mechanistic models are represented by the four differ-
ent [mechanism] portions of the DYNAFIT script shown in
Appendix A.3. Note that in contrast to the simulation script in
Appendix A.2, the regression script in Appendix A.3 treats the
enzyme reaction as if it involved only a single (variable) sub-
strate. This simplification is admissible, because in each series
of simulation experiments one of the substrates (either NAD as
the cofactor or the steroid substrate) is held at a constant con-
centration.

The resulting sums of squared deviations, corresponding to
each of the four fitting models, were converted to Akaike weights
(Burnham and Anderson, 2002, p. 75), which serve here as a
suitable model discrimination criterion. For example, for the
data set shown in Fig. 1, the resulting residual sums of squares
are summarized in Table 2. The mixed-type inhibition mech-
anism produced the lowest sum of squares (RSS = 0.1482),
b
A
b
l
k
(
f
t

T
A nation

E able m
s ormat
e

o a certain multiple of the corresponding dissociation constant
see the first two columns in Table 2). The concentration of the
ther substrate was varied.

In particular, the simulated cofactor concentrations were 10,
5, 22.5, 37.75, 50.63, 75.94 and 100 �M. The simulated steroid
ubstrate concentrations were 20, 30, 45, 67.5, 101.25, 151.88
nd 200 �M. Each of the ten simulated data sets contained the
otal of 7× 6 = 42 initial velocity data points, corresponding to

able 2
kaike weights (Burnham and Anderson, 2002, p. 75) from the model discrimi

Model n p RSS

Competitive 42 3 0.1551
Uncompetitive 42 3 19.0079
Noncompetitive 42 3 11.0124
Mixed-type 42 4 0.1482

xplanation of symbols: n, the number of data points; p, the number of adjust
quares; AICc, the second-order (i.e., corrected for small data sets) Akaike inf
ach model, relative to the most favorable model.
ut the most favorable model according to the second-order
kaike information criterion (AICc) is the competitive inhi-
ition model. The reason is that the mixed-type model has a
arger number of optimized model parameters (four optimized
inetic constants, p = 4) compared to the competitive model
p = 3). Consequently, the competitive inhibition model is pre-
erred (AICc = −226.1 indeed is the lowest among all inhibi-
ion mechanisms), even though the residual sum of squares is

analysis of simulated data shown in Fig. 1

AICc ∆ Akaike weight

-226.179 0 0.582
-24.217 201.962 0
-47.142 179.037 0

-225.514 0.665 0.418

odel parameters (kinetic constants) in each model; RSS, the residual sum of
ion criterion (Burnham and Anderson, 2002, p. 66); ∆ is the excess AICc for
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Fig. 1. Inhibition of 17�-hydroxysteroid reductase by phytosteroids, according
to the mechanism proposed by Krazeisen et al. (2001). Symbols: Artificial data
were simulated by using the DYNAFIT script listed in Appendix A.2. The re-
gression analysis, using four alternate kinetic mechanisms, was performed by
using the DYNAFIT script listed in Appendix A.3. Model curves: Least-squares
fit to the competitive mechanism.

slightly larger (RSS = 0.1551) than that produced by the mixed-
type mechanism.

The competitive inhibition mechanisms was identified as the
most plausible kinetic model in all five heuristic simulation ex-
periments, in which the steroid substrate concentration was held
constant and the cofactor substrate concentration was varied.
This is shown in the first five rows of Table 3.

The results obtained when NAD was the variable substrate,
while the steroid concentration was held constant, are illustrated
in Figs. 2 and 3 and summarized in the last five rows of Table
3. Here, the competitive inhibition mechanism is never ranked
as the most plausible kinetic model. In fact, the most plausible

Table 3
Summary of Akaike weights (Burnham and Anderson, 2002, p. 75) from the
model discrimination analysis of simulated data

Concentration Mechanism

Varied Constant CMP UNC NON MIX

C [S] = 0.25×Ks 0.79 . . 0.21
C [S] = 0.50×Ks 0.70 . . 0.30
C [S] = 1.00×Ks 0.79 . . 0.21
C [S] = 2.00×Ks 0.58 . . 0.42
C [S] = 4.00×Ks 0.77 . . 0.23
S [C] = 0.25×Kc . . . 1.00
S [C] = 0.50×Kc . . . 1.00
S [C] = 1.00×Kc . . 0.01 0.99

M
M
o

Fig. 2. Inhibition of 17�-hydroxysteroid reductase by phytosteroids, according
to the mechanism proposed by Krazeisen et al. (2001). Symbols: Artificial data
were simulated by using a DYNAFIT script similar to that listed in Appendix
A.2, except that the cofactor was held at a constant concentration, and the steroid
substrate was varied. The regression analysis, using four alternate kinetic mech-
anisms, was performed by using a DYNAFIT script similar to that listed in
Appendix A.3. Model curves: Least-squares fit to the mixed-type mechanism.

model was either the mixed-type mechanism or the noncompet-
itive mechanism.

Taken together, these result suggests that the hypothesis
(Krazeisen et al., 2001) of phytoestrogens competing for
binding to 17�-HSD-5 with the cofactor, but not with the
steroid substrate, could be kinetically tested. We also proposed
a suitable experimental design (i.e., the choice of substrate
and inhibitor concentrations). We showed that the appropriate

F
i

S [C] = 2.00×Kc . . 0.14 0.86
S [C] = 4.00×Kc . . 0.24 0.76

echanisms: CMP, competitive, UNC, uncompetitive, NON, noncompetitive,
IX, mixed-type. Higher Akaike weight (by definition, ranging from zero to

ne) corresponds to a more plausible model. For further explanation, see text.

ig. 3. Lineweaver–Burk plot based on Fig. 2. Note that the best-fit lines do not

ntersect on the vertical axis.
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statistical model discrimination analysis would rely on Akaike
weights (Burnham and Anderson, 2002, p. 75).

4. Discussion

In this work, we have described a general numerical method
for the analysis of initial-rate enzyme kinetic data, under the
rapid-equilibrium approximation. The proposed method does
not require any use of algebraic equations. Instead, a matrix for-
malism based on the formula matrix and the stability matrix is
used to compute the equilibrium composition of molecular com-
plexes. The initial rate in the enzyme reaction is then computed
from a single (possibly reversible) nonequilibrium step, based
on the mass-action law.

This generalized numerical approach has several advantages.
First, a reaction mechanism of arbitrary complexity can be
treated, while avoiding often prohibitively complex algebraic
rate equations of traditional enzyme kinetics (Segel, 1975). Sec-
ond, our formalism is applicable without restrictions not only
to “classical” (weakly bound) enzyme–inhibitors, but also to
“tight-binding” inhibitors, for which the traditional algebraic
formalism is not generally applicable. Finally, this numerical for-
malism is well suited for data fitting by nonlinear least-squares
regression, because the derivatives of initial rates with respect to
optimized model parameters (i.e., parametric sensitivities) are
computed simultaneously with the state variables, resulting in
v
t
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Table 4
“True” (simulated) values of kinetic constants, according to the reaction mech-
anism in Scheme 1 (see also DYNAFIT script in Appendix A.2), and the corre-
sponding best-fit values to the mixed-type inhibition model (see the last portion
of the DYNAFIT script in Appendix A.3)

c̃C/Kc Km kcat Ki Kis

0.25 102.3 10.1 1.33 0.25
0.5 62.8 10.1 1.82 0.48
1 41.1 10.1 1.90 1.03
2 29.9 10.0 2.93 2.01
4 24.6 9.9 5.86 3.95

“True” value 20 10 1 20

The concentration of the steroid substrate was varied as is described in the text.
The concentration of the cofactor was held constant as is shown in the first
column.

type mechanism were Ki = 0.357 ± 0.019 �M and Kis =
232.2 ± 175.3 �M. Note that the inhibition constant Kis is ap-
proximately 650 times larger than Ki. Also, Kis it is affected
by a very large uncertainty, as measured by the formal stan-
dard error. In fact, the upper end of the 99% confidence in-
terval could not be determined, which means that at the 99%
confidence level the constant Kis plausibly could be infinitely
large.

In contrast, if the steroid substrate were varied simulta-
neously with the inhibitor, a model discrimination analysis
utilizing the second-order Akaike information criterion would
favor the mixed-type (not competitive) mechanism. This is
shown in the last five rows of Table 3. In this context, it is inter-
esting to examine the best-fit values of the inhibition constants
and compare them with the “true” (i.e., simulated) values. The
relationship between the “true” and fitted values is shown in
Table 4.

An important aspect of the results in Table 4 is that the best-fit
value of the inhibition constant Kis is vastly different from its
“true” or simulated value. If the concentration of the steroid sub-
strate were varied at a very low cofactor concentration (relative to
the Michaelis constant for NAD), the best-fit value of Kis would
also appear very low. This result points to the high importance
of proper choice of concentrations in any actual experimental
study. In particular, if the steroid substrate were considered as
the variable component, the cofactor concentration should be as
c

s
i
(
a
n
w
t
v
o
c
v
n

c

ery low computational cost. The method was incorporated into
he software package DYNAFIT (Kuzmič, 1996).

As an illustrative example, we have performed a heuris-
ic simulation study of the reaction mechanism proposed by
razeisen et al. (2001) for the inhibition of 17�-hydroxysteroid
ehydrogenase type 5 by phytoestrogens. The salient feature of
his proposed mechanism is that the inhibitors (e.g., gibberellin)
ind only to the cofactor site on the enzyme, but not to the
teroid-binding site. Here, we presented a practical, “workshop-
tyle” description on how this mechanistic hypothesis could be
ested by using kinetic methods, without having to deal with
omplex algebraic equations.

The mechanistic model discrimination analysis could be ac-
omplished by utilizing the DYNAFIT script listed in Appendix
.3. The required experiment involves simultaneously varying

he concentrations of the inhibitor and one of the substrates,
hile holding the concentration of the other substrate at a con-

tant value.
We showed in Table 3 that if the true inhibition mechanism

onformed to the proposal by Krazeisen et al. (2001), and if the
ofactor (NAD) were varied simultaneously with the inhibitor, a
odel discrimination analysis utilizing the second-order Akaike

nformation Criterion would indeed favor the competitive mech-
nism. Ranked as a close second, according to AICc values, is
he mixed-type mechanism. However, upon closer examination
f the kinetic constants obtained in the regression analysis, it
s seen that the noncompetitive component of inhibitor binding
ould be negligibly weak, compared to the principal binding
ode (competitive with NAD).
For example, in the case of the data set shown in Fig. 1, the

est-fit values of inhibition constants appearing in the mixed-
lose to saturation as is practically feasible.
In summary, we have demonstrated in a heuristic simulation

tudy that by utilizing a properly chosen experimental design,
t is possible to use kinetic methods to gain evidence in favor
or against) the structural hypothesis proposed by Krazeisen et
l. (2001) for the inhibition of 17�-hydroxysteroid dehydroge-
ase type 5 by phytoestrogens. If inhibitors such as gibberellin
ere in fact binding only at the cofactor site, it is expected that

he kinetic pattern observed at constant NAD concentration and
aried steroid concentration would appear to be mixed-type, but
nly if the NAD concentration were kept sufficiently high. In
ontrast, if the steroid concentration were held constant (at any
alue, relative to the corresponding Michaelis constant), the ki-
etic pattern would correspond to competitive inhibition.

It is also clear from our results that the apparent inhibition
onstants determined under experimental conditions simulated
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here, under which one of the substrates is held constant (as is
commonly done in model discrimination studies), the best-fit
values of inhibition constants would bear very little resemblance
to the true values of inhibition constants. In fact, the true values
of Ki and Kis could be determined only if at least three reaction
components (both substrates and the inhibitor in question) were
varied simultaneously.

Probably the most important result is that practically oriented
enzymologists, who wish to employ thorough kinetic investiga-
tions but lack the expertise in mathematics, can now use an up-
dated version of the software DYNAFIT (Kuzmič, 1996), which
implements the matrix method for generalized rapid-equilibrium
enzyme kinetics described in this paper. The DYNAFIT software
package is available for download free of charge to all academic
researchers at http://www.biokin.com/dynafit.
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Appendix A

A
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e
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f

J

c

rium concentrations depend on the parameters p also. In partic-
ular, we seek the vector ∂c/∂p of partial derivatives with respect
to the given parameter p. At equilibrium the deviations f vanish,
f(c, p) = 0. Both sides of this equation can be differentiated by
using the chain rule of calculus (Kreyszig, 1993, p. 472). Thus
the derivatives ∂c/∂p are obtained by solving the linear system
(A.4). Note that the matrix J also appears in Eq. (5). Therefore,
the Gaussian factors from the final matrix decomposition within
the iterative Newton–Raphson method can be re-used in a single
additional back-substitution.

∂f(c, p)

∂p
= ∂f(c, p)

∂c
· ∂c
∂p
+ ∂f(c, p)

∂p
· ∂p
∂p

= ∂f(c, p)

∂c
· ∂c
∂p
+ ∂f(c, p)

∂p
= 0 (A.3)

J · ∂c
∂p
= − ∂f

∂p
(A.4)

The form of right-hand side vector above depends on
whether the parameter p is an equilibrium constant or an an-
alytic concentration. If p is a reaction equilibrium constant
Ku, than we differentiate function f as is shown in Eq. (A.5).
Derivatives of component concentrations with respect to the
given analytic concentration cu are obtained as is shown in
E

t
l
p

.1. Derivation of the mathematical model

This Appendix shows the derivation of matrix and vector
lements that are required in the multidimensional Newton–
aphson method, and in the computation of first derivatives of
quilibrium concentrations with respect to model parameters
reaction equilibrium constants and total or analytic concentra-
ions).

Elements of the Jacobian matrix are obtained by differ-
ntiation of mass balance equations (A.1) as is shown in
q. (A.2).

i =
nS∑

j=1

Fi,jcj −
nS∑

j=1

Fi,jc̃j; i = 1, 2, . . . , nE (A.1)

i,j ≡ ∂fi

∂cj

= ∂

∂cj

{
nS∑

k=1

Fi,kβk

nE∏
l=1

c
Fl,k

l −
nS∑

k=1

Fi,kc̃k

}

=
nS∑

k=1

Fi,kFj,kc
Fj,k−1
j βk

nE∏
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l �=j

c
Fl,k

l

=
nS∑

k=1

Fi,kFj,kc
−1
j βk

nE∏
l=1

c
Fl,k

l

=
nS∑

k=1

Fj,kFi,k

ck

cj

; i, j = 1, · · · , nE (A.2)

The deviations from mass balance f depend on equilibrium
oncentrations c and on parameters p. In their turn the equilib-
q. (A.6).
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= ∂

∂c̃u

⎧⎨
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nS∑
j=1

Fi,j

nR∏
k=1

K
Bk,j
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c
Fk,j

k −
nS∑

j=1

Fi,jc̃j

⎫⎬
⎭

= −
nS∑

j=1

Fi,jδu,j; i = 1, · · · , nE (A.6)

The derivatives of complex species are derived by differen-
iation of both sides in Eq. (1). If the parameter p is an equi-
ibrium constant, we obtain formula (A.7). If the parameter

is an analytic concentration, we obtain formula (A.8) in a

http://www.biokin.com/dynafit
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similar fashion.

∂cj
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Fig. A.1. Lineweaver–Burk plot based on Fig. 1. Note that the best-fit lines do
intersect on the vertical axis.

All of the above formulas are derived automatically, and
transparently to the user, by the software package DYNAFIT
(Kuzmič, 1996).

A.2. DYNAFIT input file for simulation

This Appendix lists an input file for the software package
DYNAFIT, which was used to generate the simulated data shown
in Figs. 1 and A.1.
A.3. DYNAFIT input file for model discrimination

This Appendix lists an input file for the software package DY-
NAFIT, which was used for the model discrimination analysis
illustrated in Figs. 1 and A.1.
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