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Abstract

Since its original publication, the DynaFit software package [Kuzmič, P. (1996).

Program DYNAFIT for the analysis of enzyme kinetic data: Application to HIV

proteinase. Anal. Biochem. 237, 260–273] has been used in more than 500

published studies. Most applications have been in biochemistry, especially in

enzyme kinetics. This paper describes a number of recently added features and

capabilities, in the hope that the tool will continue to be useful to the enzymo-

logical community. Fully functional DynaFit continues to be freely available to all

academic researchers from http://www.biokin.com.
vier Inc.

reserved.
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1. Introduction

DynaFit (Kuzmič, 1996) is a software package for the statistical analysis
of experimental data that arise in biochemistry (e.g., enzyme kinetics;
Leskovar et al., 2008), biophysics (protein folding; Bosco et al., 2009),
organic chemistry (organic reaction mechanisms; Storme et al., 2009),
physical chemistry (guest–host complexation equilibria; Gasa et al., 2009),
food chemistry (fermentation dynamics; Van Boekel, 2000), chemical
engineering (bio-reactor design; VonWeymarn et al., 2002), environmental
science (bio-sensors for heavy metals; Le Clainche and Vita, 2006), and
related areas.

The common features of these diverse systems are that (a) the underlying
theoretical model is based on the mass action law (Guldberg and Waage,
1879); (b) the model can be formulated in terms of stoichiometric equations;
and (c) the experimentally observable quantity is a linear function of concen-
trations or, more generally, populations of reactive species.

The main use of DynaFit is in establishing the detailed molecular
mechanisms of the physical, chemical, or biological processes under
investigation. Once the molecular mechanism has been identified, DynaFit
can be used for routine quantitative determination of either microscopic
rate constants or thermodynamic equilibrium constants that characterize
individual reaction steps.

DynaFit can be used for the statistical analysis of three different classes
of experiments: (1) the progress of chemical or biochemical reactions
over time; (2) the initial rates of enzyme reaction, under either the
rapid-equilibrium or the steady-state approximations (Segel, 1975); and
(3) equilibrium ligand-binding studies.

Regardless of the type of experiment, the main benefit of using the
DynaFit package is that it allows the investigator to specify the fitting model
in the biochemical notation (e.g., E þ S <¼¼> E.S --> E þ P) instead of
mathematical notation (e.g., v ¼ kcat[E]0[S]0/([S]0 þ Km)).

For example, to fit a set of initial rates of an enzyme reaction to a steady-
state kinetic model for the ‘‘Bi Bi Random’’ mechanism (Segel, 1975,
p. 647) (Scheme 10.1), the investigator can specify the following text in
the DynaFit input file:

[data]
data ¼ rates
approximation ¼ steady-state

[mechanism]
E þ A <¼¼> E. A : k1 k2
E. A þ B <¼¼> E. A. B : k3 k4
E. A. B <¼¼> E. B þ A : k5 k6
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Scheme 10.1
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E. B <¼¼> E þ B : k7 k8
E. A. B --> E þ P þ Q : k9

[constants]
k8 ¼ (k1 k3 k5 k7) / (k2 k4 k6)

. . .

The program will internally derive the initial rate law corresponding to
this steady-state reaction mechanism (or any arbitrary mechanism), and
perform the least-squares fit of the experimental data. This allows the
investigator to focus exclusively on the biochemistry, rather than on the
mathematics. Using exactly equivalent notation, one can analyze equilib-
rium binding data, such as those arising in competitive ligand displacement
assays, or time-course data from continuous assays.

Importantly, the DynaFit algorithm does not make any assumptions
regarding the relative concentrations of reactants. Specifically, it is no
longer necessary to assume that the enzyme concentration is negligibly
small compared to the concentrations of reactants (substrates and products)
andmodifiers (inhibitors and activators). This feature is especially valuable for
the kinetic analysis of ‘‘slow, tight’’ enzyme inhibitors (Morrison andWalsh,
1988; Szedlacsek and Duggleby, 1995; Williams and Morrison, 1979).

Since its original publication (Kuzmič, 1996), DynaFit has been utilized
in more than 500 journal articles. In the intervening time, many new
features have been added. The main purpose of this report is to give a
brief sampling of several newly added capabilities, which might be of
interest specifically to the enzymological community. The survey of
DynaFit updates is by no means comprehensive; the full program
documentation is available online (http://www.biokin.com/dynafit).

This article has been divided into four parts. The first three parts touch
on the three main types of experiments: (1) equilibrium ligand binding
studies; (2) initial rates of enzyme reactions; and (3) the time course of
enzyme reactions. The fourth and last part contains a brief overview of
selected data-analytical approaches, which are common to all three major
experiment types.

http://www.biokin.com/dynafit
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2. Equilibrium Binding Studies

DynaFit can be used to fit, or to simulate, equilibrium binding data.
The main purpose is to determine the number of distinct noncovalent
molecular complexes, the stoichiometry of these complexes in terms of
component molecular species, and the requisite equilibrium constants.

The most recent version of the software includes features and capabilities
that go beyond the original publication (Kuzmič, 1996). For example,
DynaFit can now be used to analyze equilibrium binding data involv-
ing—at least in principle—an unlimited number of simultaneously varied
components. A practically useful four-component mixture might include
(1) a protein kinase; (2) a Eu-labeled antibody (a FRET-donor) raised
against the kinase; (3) a kinase inhibitor, whose dissociation constant is
being measured; and (4) a fluorogenic FRET-acceptor molecule competing
with the inhibitor for binding. Investigations are currently ongoing into the
optimal design of such multicomponent equilibrium binding studies.
2.1. Experiments involving intensive physical quantities

DynaFit can analyze equilibrium binding experiments involving intensive
physical quantities. Unlike their counterparts, the extensive physical
quantities, intensive quantities do not depend on the total amount of
material present in the system. Instead, intensive quantities are propor-
tional to mole fractions of chemical or biochemical substances. A prime
example of an intensive physical quantity is the NMR chemical shift
(assuming that fast-exchange conditions apply, where the chemical shift
is a weighted average of chemical shifts of all microscopic states of the
given nucleus).

We have recently used this technique to investigate the guest–host
complexation mechanism in a system involving three different ionic species
of a guest molecule (paraquat, acting as the ‘‘ligand’’) binding to a crown-
ether molecule (acting as the ‘‘receptor’’), with either 1:1 or 1:2 stoichiom-
etry (Gasa et al., 2009). This guest–host system involved four components
forming up to nine noncovalent molecular complexes, and a correspond-
ingly large number of microscopic equilibrium constants. DynaFit has also
been used in the NMR context to determine the binding affinity between
the RIZ1 tumor suppressor protein and a model peptide representing
histone H3 (Briknarová et al., 2008).

The following illustrative example involves the use of DynaFit for highly
precise determination of a protein–ligand equilibrium binding constant.
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2.1.1. NMR study of protein–protein interactions
Figure 10.1 (unpublished data courtesy of K. Briknarová and J. Bouchard,
University of Montana) displays the changes in NMR chemical shifts for six
different protons and six different nitrogen nuclei in the PR domain from a
transcription factor PRDM5 (Deng and Huang, 2004), depending on the
concentration of a model peptide ligand. The NMR chemical shift data for
all 12 nuclei were analyzed in the global mode (Beechem, 1992). The main
purpose of this experiment was to determine the strength of the binding
interaction. It was assumed that the binding occurs with the simplest 1:1
stoichiometry. A DynaFit code fragment corresponding to Scheme 10.2 is
shown as follows:

[mechanism]
R þ L <¼¼> R.L : Kd1 dissociation

[responses]
intensive

[data]
plot titration

. . .

Note the use of the keyword intensive in the [responses]
section of the script, which means that the observed physical quantity
(ligand), mM (ligand), mM
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Figure 10.1 NMR chemical shift titration of the PRDM5 protein (total concentration
varied between 0.125 and 0.1172 mM) with a model peptide ligand. Left: 1H-chemical
shifts of six selected protons. Right: 15N-chemical shifts of six selected nitrogen nuclei.
The chemical shifts for all 12 nuclei were fit globally (Beechem, 1992) to the binding
model shown in Scheme 10.2.
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Scheme 10.2
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(chemical shift) is proportional not to the quantity of various molecular
species present in the sample, but rather to the corresponding mole
fractions.

Also note the keyword titration, which is used to produce a simple
Cartesian plot—with the ligand concentration [L] formally acting as the
only independent variable—even though the experiment was performed by
gradual addition of ligand to the same initial protein sample. This means that
both the protein (titrand) and the model peptide (titrant) concentrations
were changing with each added aliquot. It is very important to recognize
that, in this case, the experimental data points are not statistically indepen-
dent, as is implicitly assumed by the theory of nonlinear least-squares
regression ( Johnson, 1992, 1994; Johnson and Frasier, 1985). However,
the practice of incrementally adding to the same base solution of the titrand
has been firmly established in protein–protein and protein–ligand NMR
titration studies.

The best-fit value of the dissociation equilibrium constant, determined
from the data shown in Fig. 10.1, was Kd1 ¼ (0.087 � 0.007) [0.073 ...
0.108] mM. The values in square brackets are approximate confidence
intervals determined by the profile-t method of Bates and Watts
(Brooks et al., 1994). Please note that, unlike the formal standard error
shown in the parentheses, the confidence intervals are not symmetrical
about the best-fit value.

Using the global fit method (Beechem, 1992), the strength of the
protein–ligand binding interactions was determined for a number of
different nuclei, and the results were highly consistent; the coefficient of
variation for the equilibrium was approximately 10% regardless of which
chemical shift was monitored.
2.2. Independent binding sites and statistical factors

The most recent version of DynaFit (Kuzmič, 1996) allows the investigator
to properly define the relationship between (a) intrinsic rate constant or
equilibrium constants, and (b) macroscopic rate constants or equilibrium
constants. This distinction is necessary in the analysis of multiple identical
binding sites. As the simplest possible example, consider the binding of
L, a ligand molecule, to R, a receptor molecule that contains two identical
and independent binding sites (Scheme 10.3).
R R R
L L

L

2 ka ka

kd 2 kd

Scheme 10.3
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In Scheme 10.3, ka and kd are intrinsic rate constants. The statistical factors
(‘‘2’’) shown in Scheme 10.3 express the fact that there are two identical path-
ways for L to associatewithR, but only oneway for for L to associatewithRL.
Similarly,RL2 can yieldRL in two equivalentways,whereasRL candissociate
intoR þ Lonly inoneway.Thus, ifwedefine the first and seconddissociation
equilibrium constants as K1 ¼ [RL]eq[L]eq/[RL2]eq and K2 ¼ [R]eq[L]eq/
[RL]eq, then for independent equivalent sites wemust haveK1 ¼ 4K2.

In the DynaFit notation, the difference between independent and inter-
acting binding sites can be expressed by using the following syntax:

[task]
data ¼ equilibria
model ¼ interacting ?

[mechanism]
R þ L <¼¼> R.L : K1 dissociation
R.L þ L <¼¼> R.L.L : K2 dissociation

[constants]
K1 ¼ ...
K2 ¼ ...

...
[task]

data ¼ equilibria
model ¼ independent ?

[mechanism]
R þ L <¼¼> R.L : K1 dissociation
R.L þ L <¼¼> R.L.L : K2 dissociation

[constants]
K1 ¼ 4 * K2 ; <¼¼ STATISTICAL FACTOR
K2 ¼ ...

...
2.2.1. Interacting versus independent sites on a trimeric enzyme
Błachut-Okrasinska et al. (2007) utilized DynaFit for a comprehensive
kinetic investigation of mRNA cap analogues binding to the eIF4E regu-
latory protein (see also Niedzwiecka et al., 2007). From the same laboratory
comes a study of the trimeric purine nucleoside phosphorylase (PNP)
interacting with nucleoside multisubstrate inhibitors (Wielgus-Kutrowska
et al., 2007). A representative equilibrium binding experiment is shown in
Fig. 10.2 (raw experimental data (Wielgus-Kutrowska and Bzowska, 2006)
courtesy of B. Wielgus-Kutrowska, Warsaw University). The object of the
experiment was to determine whether inhibitor binding sites on the PNP
trimer are independent or interacting.

Under the given assay conditions, the PNP enzyme is a nondissociative
homotrimer. The presence of three separate inhibitor binding sites is
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Figure 10.2 Equilibrium titration of the trimeric PNP from Cellulomonas sp. (0.47 mM
as monomer) with a nucleoside analog inhibitor 2-amino-9-[2-(phosphonometoxy)-
ethyl]-6-sulfanylpurine; F/F0 represents relative fluorescence intensity (PNP plus
ligand divided by PNP only). See Wielgus-Kutrowska and Bzowska (2006) for details.
Solid curve: least-squares fit to the interacting sites model (Scheme 10.4). Dashed curve:
least-squares fit to the independent sites model, in which equilibrium constants were
linked via statistical factors such that K1:K2:K3 ¼ 9:3:1.
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Scheme 10.4
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represented in Scheme 10.4 by three association equilibrium constants, K1,
K2, and K3. If the inhibitor sites were genuinely independent, the titration
data would fit sufficiently well to an equilibrium binding model where the
ratios K1:K2:K3 ¼ 9:3:1 are strictly maintained. In contrast, if the binding
sites are interacting, it would be necessary to relax the fitting model such
that the equilibrium constants could attain arbitrary values.

To perform the model discrimination analysis (Myung and Pitt, 2004)
using the Akaike Information Criterion (AICc) (Burnham and Anderson,
2002), the requisite DynaFit script contains the following text:

[task]
data ¼ equilibria
model ¼ interacting ?

[mechanism]
P þ L <¼¼¼> P.L : K1 equilibrium
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P.L þ L <¼¼¼> P.L.L : K2 equilibrium
P.L.L þ L <¼¼¼> P.L.L.L : K3 equilibrium

[constants] ; vary independently
K3 ¼ 1 ?
K2 ¼ 3 ?
K1 ¼ 9 ?

...
[task]

data ¼ equilibria
model ¼ independent ?

[constants] ; link via statistical factors
K3 ¼ 1 ?
K2 ¼ 3 * K3
K1 ¼ 9 * K3

...

As can be seen fromFig. 10.2 (dashed curve), the independent-sitesmodel
provides a poor description of the available data. The interacting-sites
model (solid curve) produces a much better fit. This result is in agreement
with previously published investigations of the same system (Bzowska,
2002; Bzowska et al., 2004; Wielgus-Kutrowska et al., 2002, 2007).
3. Initial Rates of Enzyme Reactions

The study of initial rates of enzyme-catalyzed reactions defines the
traditional approach tomechanistic enzymology (Segel, 1975). Earlier versions
of the DynaFit software package (Kuzmič, 1996) were suitable for the analysis
of initial-rate data under the rapid equilibrium approximation (Kuzmič, 2006),
where it is assumed that the chemical steps in an enzyme mechanism are
negligibly slow in comparison with all association and dissociation steps.

The current version of DynaFit extends the initial rate analysis to the more
general steady-state approximation (Kuzmič, 2009a). This section introduces the
important topic of thermodynamic cycles, which are relevant in steady-state
enzyme mechanisms, especially those involving multiple substrates
(e.g., kinases or reductases). A simulation study, involving dihydrofolate
reductase (DHFR) as a model system, provides an illustrative example.
3.1. Thermodynamic cycles in initial rate models

It is a fundamental fact of thermodynamics that the Gibbs free energy
change is independent of any particular path between thermodynamic
states. This leads to the idea of a thermodynamic box in enzyme kinetic
mechanisms (Gilbert, 1999, p. 271).
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There are numerous logically equivalent ways to express the idea of a
thermodynamic box. When expressed specifically in terms of microscopic
rate constants, the product of rate constants associated with a set of arrows
starting and ending at a given reactant must be the same in both directions
(clockwise and counterclockwise, Scheme 10.5). This is equivalent to
saying that the overall equilibrium constant associated with any cyclic
path through the mechanism must be unity.

In general, we do not usually have advance knowledge of the Gibbs free
energy change associated with the uncatalyzed reaction. However, for all
nonchemical steps in the mechanism (i.e., noncovalent binding and
dissociation of ligands), the overall equilibrium constant for each thermody-
namic cyclemust be unity.We can use this fact to check on the consistency of a
postulated set of rate constant values. In the latest version of DynaFit, we can
also use this fact to constrain the values of particularmicroscopic rate constants.
3.1.1. Steady-state initial rate equation for DHFR
The catalytic mechanism of Escherichia coli DHFR is shown in Scheme 10.6
(Benkovic et al., 1988; Fierke et al., 1987). The abbreviations used in
Scheme 10.3 are as follows: E is the DHFR enzyme; F and FH are
dihydrofolate and tetrahydrofolate, respectively; N and NH are NADPþ
and NADPH, respectively; the symbol EFH

N stands for the ternary molecular
complex E � N � FH; and the numbers above each arrow represent
microscopic rate constant (e.g., ‘‘1’’ stands for k1). All 22 microscopic rate
constants appearing in Scheme 10.6 have been determined in a large
number of independent experiment (Table 10.1).

The reaction mechanism in Scheme 10.6 contains six thermodynamic
boxes that do not involve the reversible chemical step (rate constants k21 and
k22). For example, moving clockwise or counterclockwise along the lower
right box in Scheme 10.6, we expect that the product k8 � k9 � k11 �
k13 ¼ 27,200 be numerically equal to k7 � k10 � k12 � k14 ¼ 28,000.
The corresponding equilibrium constantK ¼ k8k9k11k13/k7k10k12k14 ¼ 0.97
E E•A

E•B E•A•B

k1
E E•A

E•B E•A•B

=k1×k3×k5×k7 

k3

k5

k7

k2

k4

k6

k8

k2×k4×k6×k8

Scheme 10.5



Table 10.1 Microscopic rate constants in the catalytic mechanism of E. coli DHFR
(Benkovic et al., 1988)

k1 25 mM�1 s�1 k2 1.4 s�1

k3 8 mM�1 s�1 k4 85 s�1

k5 12.5 s�1 k6 2 mM�1 s�1

k7 3.5 s�1 k8 20 mM�1 s�1

k9 40 mM�1 s�1 k10 40 s�1

k11 1.7 s�1 k12 5 mM�1 s�1

k13 20 s�1 k14 40 mM�1 s�1

k15 13 mM�1 s�1 k16 300 s�1

k17 25 mM�1 s�1 k18 2.4 s�1

k19 200 s�1 k20 5 mM�1 s�1

k21 950 s�1 k22 0.6 s�1
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Scheme 10.6
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is indeed very nearly equal to unity. The same is true for all five remaining
thermodynamic boxes, including the largest (not counting the chemical
step) box defined by the path EN

FH ! EFH ! ENH
FH ! ENH ! ENH

F !
EF ! E ! EN ! EN

FH.
The steady-state initial rate equation for DHFR, based on the compre-

hensive mechanism in Scheme 10.6 and derived by using the King–Altman
method (King and Altman, 1956), contains 33 algebraic terms in the
numerator, 65 algebraic terms in the denominator, and up to cubic expo-
nents for concentrations. When printed in a page layout required by this
volume, the single algebraic rate equation for DHFR would occupy
approximately 20 printed pages (results not shown). A quote from Segel’s
seminal text, discussing the ‘‘Bi Bi Random Steady-State’’ mechanism, is
also applicable to DHFR.
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The [initial rate] equation does not describe a hyperbola and, theoretically, the
reciprocal plots are not linear, unless one substrate is saturating. [...] The groups
of rate constants cannot be combined into convenient kinetic constants
[Michaelis constants and inhibition constants]. (Segel, 1975, p. 647)
In DynaFit, we can now represent the same initial rate law, under the
steady-state approximation, by entering the following text:

[task]
data ¼ rates
approximation ¼ steady-state

[reaction] | F þ NH <¼¼> FH þ N
[enzyme] | E
[mechanism]

E þ FH <¼¼> E.FH : k1 k2
E.FH þ NH <¼¼> E.FH.NH : k3 k4
E.FH.NH <¼¼> E.NH þ FH : k5 k6

E.NH <¼¼> E þ NH : k7 k8
E.NH þ F <¼¼> E.F.NH : k9 k10
E.F.NH <¼¼> E.F þ NH : k11 k12

E.F <¼¼> E þ F : k13 k14
E þ N <¼¼> E.N : k15 k16

E.N þ FH <¼¼> E.FH.N : k17 k18
E.FH.N <¼¼> E.FH þ N : k19 k20
E.F.NH <¼¼> E.FH.N : k21 k22

The steady-state rate initial law derived internally by DynaFit consists of
a system of simultaneous nonlinear algebraic equations evaluated numeri-
cally (Kuzmič, 2009a), by using the multidimensional Newton–Raphson
method (Press et al., 1992, p. 379). Unlike the traditional algebraic formal-
ism (Segel, 1975), the numerical formalism utilized by DynaFit does not
make the simplifying assumption that all reactant and modifier concentra-
tions are essentially infinitely larger than the enzyme concentration.

Given the values of rate constants associated with the mechanism in
Scheme 10.6, DynaFit was used to simulate initial reaction rates while
varying the concentration of dihydrofolate and NADPHþ (Fig. 10.3).
The substrate saturation curves at relatively low dihydrofolate concentra-
tions are expected to display a local maximum, followed by a decrease to an
asymptotically saturating value.

Importantly, DynaFit can now properly take into account the pres-
ence of thermodynamic boxes in the DHFR mechanism, in order to
constrain certain rate constants based on the values of other rate con-
stants. For example, to express the constraint k7 ¼ k8k9k11k13/k10k12k14,
and a similar constraint for rate constant k2, we would use the following
DynaFit input:
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Figure 10.3 Simulated initial reaction rates for DHFR, based on the mechanism in
Scheme 10.6 (Benkovic et al., 1988; Fierke et al., 1987) and rate constant values listed
in Table 10.1.
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[constants]
k2 ¼ (k1 k3 k5 k7) / (k4 k6 k8)
k7 ¼ (k8 k9 k11 k13) / (k10 k12 k14)

Given that the DHFR mechanism contains six thermodynamic boxes
for the noncovalent binding and dissociation steps, and also given that each
thermodynamic box involves between 8 and 16 microscopic rate constants,
many logically equivalent ways are available to place overall constraints on
the kinetic model. Which particular rate constants should be constrained in
DynaFit models need to be carefully evaluated on a case-by-case basis.

A casual survey of the published biochemical literature reveals occasional
violations of the thermodynamic box rule.

For example, Digits and Hedstrom (1999) presented a kinetic model for
inosine monophosphate (IMP) dehydrogenase interacting with IMP and
NADþ (Scheme 10.7). In Scheme 10.7 (Digits and Hedstrom, 1999), the
numerical values of all monomolecular rate constants are in s�1 units, and
the bimolecular association rate constants are shown in mM�1 s�1 units.

The salient feature of the mechanism in Scheme 10.7 is that the enzyme–
IMP complex undergoes an isomerization before cofactor binding. Clearly,
the overall equilibrium constant for the noncovalent interactions is signifi-
cantly different from unity, which means that at least one rate constant in
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the postulated kinetic model is in error. This error was corrected in a later
report (Schlippe et al., 2004), where the kinetic mechanism was further
developed using DynaFit.

The explanation for the inconsistency in Scheme 10.7 (L. Hedstrom,
personal communication) lies in that the equilibria for formation of the
ternary complexes were determined by measuring binding to the binary
complexes of an inactive mutant. The relevant mutation (Cys to Ala) perturbs
IMP binding in the binary complex, so IMP binding to the E.NAD
complex is probably also perturbed and therefore unlikely to mimic the
wild-type enzyme. Nevertheless, the measured values were utilized in the
postulated reaction scheme. As a general warning, when using inactive
mutants to infer rate constants in a similar fashion, special attention must
be paid to the consistency of thermodynamic boxes.

A similar inconsistency in a noncovalent binding mechanism is
present in a DynaFit study of the plasma membrane calcium pump isoform
4b by calmodulin (Penheiter et al., 2003). The recent addition of a thermo-
dynamic box checking feature into DynaFit should prevent similar
inconsistencies occasionally cropping up in the published literature.
4. Time Course of Enzyme Reactions

DynaFit (Kuzmič, 1996) was initially developed to process the time
course of ‘‘slow, tight’’ (Morrison and Walsh, 1988; Szedlacsek and
Duggleby, 1995; Williams and Morrison, 1979) enzyme inhibition assays.
In the intervening period, a number of features and capabilities had been
added to further facilitate the analysis of reaction dynamics. For example,
DynaFit can now be used to analyze ‘‘double-mixing’’ stopped-flow experi-
ments (Williams et al., 2004). Microscopic rate constants can be constrained
with respect to statistical factors (see Section 2.2) or thermodynamic boxes
(Section 3.1), or defined as fixed ratios where equilibrium constants are
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known from independent experiments. This section describes another
representative example of such recently added capabilities.
4.1. Invariant concentrations of reactants

Under highly specialized experimental circumstances, or for the purpose of
modeling an in vivo biochemical system, DynaFit can now be used to
simulate or fit experimental data under the assumption that the concentra-
tions of certain reactants remain invariant, even as they participate in the
underlying reaction mechanism. The corresponding DynaFit notation is to
use the exclamation mark:

[concentrations]
Substrate ¼ 1.2345 !

4.1.1. SPR on-chip enzyme kinetics
The invariant concentration technique had been utilized in building a prelimi-
nary mathematical model for on-chip kinetics of transglucosidase alter-nansu-
crase (E.C. 2.4.1.140) fromLeuconostoc mesenteroidesNRRLB-1355 (Clé et al.,
2008, 2010). This enzyme catalyzes the transfer of glucose from sucrose to
acceptors at their nonreducing ends. In this particular case, the acceptor was a
carboxymethyl dextran surface on a surface plasmon resonance (SPR) chip.

When sucrose solution mixed with the transglucosidase enzyme is
flowed over the SPR chip, the dextran oligomer chains on the chip’s surface
are extended with additional glucose moieties, and this process can be
monitored by SPR. Importantly, the bulk sucrose concentration does not
change over time, because it is being replenished by the continuous flow.

A typical SPR sensorgram of the enzyme-catalyzed extension of a
dextran surface is shown in Fig. 10.4 (see Clé et al., 2010 for details). The
important portion of the DynaFit script used in this analysis is shown below.
Note that the enzyme–sucrose (‘‘S’’) association is made irreversible in the
postulated mechanism. The reasons for choosing this simplified Van Slyke–
Cullen kinetic model (Slyke and Cullen, 1914) are explained in a separate
report (Kuzmič, 2009b).

[task]
data ¼ progress
task ¼ fit

[mechanism]
E þ dextran <¼¼> E.dextran : k1 k2
E.dextran þ S ---> E.dextran. S : k3
E.dextran. S ---> E.dextran þ P : k4

[concentrations]
E ¼ 0.18 ! ; invariant
S ¼ 11700 ! ; invariant
dextran ¼ 0.00002



20 40 600
t, s

0

200

400

600

800

1000

1200

Si
gn

al
E

D

C

B

A

Figure 10.4 SPR sensorgram of the enzyme-catalyzed extension of a dextran surface.
Transglucosidase alternansucrase at various concentrations was coinjected with sucrose
(11.7 mM) over the surface of the SPR chip. Curves A�E: enzyme concentration
[E]0 ¼ 0.018, 0.022, 0.03, 0.044, and 0.09 mM, respectively.
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The surface catalysis phenomena involved, for example, in starch biosyn-
thesis and in cellulose degradation are still relatively poorly understood. The
significance of the on-chip enzyme kinetics experiment is that it can
potentially shed light on biologically relevant heterogeneous phase processes.

At this preliminary phase of the investigation, the best-fit values of
microscopic rate constants (not shown) were obtained separately for each
recorded progress curve. The goal of the ongoing research is to produce a
global (Beechem, 1992) mathematical model for the on-chip kinetics.

5. General Methods and Algorithms

This section briefly summarizes selected features and capabilities added
to the DynaFit software package since its original publication (Kuzmič,
1996). These general algorithms are applicable to all types of experimental
data (progress curves, initial rates, and complex equilibria) being analyzed.

This selection of added features is not exhaustive, but it emphasizes some
of the most difficult tasks in the analysis of biochemical data:
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� How do we know where to start (the initial estimate problem);
� How do we know whether the best-fit parameters are good enough
(the confidence interval problem); and

� How do we know which fitting model to choose among several
alternatives (the model discrimination problem).
5.1. Initial estimates of model parameters

One of the most difficult tasks of a data analyst performing nonlinear
least-squares regression is to come up with initial estimates of model
parameters that are sufficiently close to the true values. If the initial estimate
of rate or equilibrium constants is not sufficiently accurate, the data-fitting
algorithm might converge to a local minimum, or not converge at all. This is
the nature of the Levenberg–Marquardt algorithm (Marquardt, 1963; Reich,
1992), which is the main least-squares minimization algorithm used by
DynaFit.

The updated DynaFit software offers two different methods to avoid
local minima on the least-squares hypersurface, that is, to avoid incorrect
‘‘best-fit’’ values of rate constants and other model parameters. The first
method relies on a brute-force systematic parameter scan, and the second
method uses ideas from evolutionary computing.
5.1.1. Systematic parameter scan
To increase the probability that a true global minimum is found for all
rate and equilibrium constants, DynaFit allows the investigator to specify a
set of alternate initial estimates. The software then generates all possible
combinations of starting values, and performs the corresponding number of
independent least-squares regressions. The results are ranked by the residual
sum of squares.

For example, let us assume that the postulated mechanism includes four
adjustable rate constants, k1–k4, and that we wish to examine four different
starting values (spaced by a factor of 10) for each of them. The requisite
DynaFit code would read as follows:

[constants]
k1 ¼ { 0.01, 0.1, 1, 10} ?
k2 ¼ {0.001, 0.01, 0.1, 1} ?
k3 ¼ {0.001, 0.01, 0.1, 1} ?
k4 ¼ {0.001, 1, 1000, 1000000} ?

In this case, the program would perform 44 ¼ 256 separate least-squares
minimizations, starting from 256 different combinations of initial estimates.
In extreme cases, the execution time required for such systematic parameter
scans might reach many minutes or even hours by using the currently
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available computing technology. However, for critically important data
analyses, avoiding local minima and therefore incorrect mechanistic con-
clusions should be worth the wait.

5.1.2. Global minimization by differential evolution
As an alternate solution to the problem of local minima in least-squares
regression analysis, DynaFit now uses the differential evolution (DE) (Price
et al., 2005) algorithm. DE belongs to the family of stochastic evolutionary
strategy (ES) algorithms, which attempt to find a global sum-of-squares
minimum by using ideas from evolutionary biology.

The essential feature of any ES data-fitting algorithm is that it starts from
a large number of simultaneous, randomly chosen initial estimates for all
adjustable model parameters. The algorithm then evolves this population of
‘‘organisms,’’ by allowing only the sufficiently fit population members to
‘‘sexually reproduce.’’ In this case, by fitness we mean the sum of squares
associated with each particular combination of rate constants and other
model parameters (the genotype). By sexual reproduction, we mean that
selected population members have their genome (i.e., model parameters)
carried over into the next generation by using Nature’s usual tricks—
chromosomal crossover accompanied by random mutations.

There are many variations on the ES computational scheme, and also a
growing number of variants of the DE algorithm itself. The interested
reader is encouraged to examine several recently published books and
monographs (Chakraborty, 2008; Feoktistov, 2008; Onwubolu and
Davendra, 2009; Price et al., 2005) for details. Typically, the number of
population members does not change through the evolutionary process,
meaning that if we start with 1000 different initial estimates for each rate
constant, we also have 1000 different estimates at the end, after a large
number of generations have reproduced. Importantly, while we might start
with a population of 1000 estimates spanning 12 or 18 orders of magnitude
for each rate constant, the hope is that we end with 1000 estimates all of
which are close to the best possible value.

The performance of the DE algorithm (Price et al., 2005), as implemen-
ted in DynaFit, is illustrated by using an example involving irreversible
inhibition kinetics of the HIV protease. This particular test problemwas first
presented in the original DynaFit publication (Kuzmič, 1996), and was
subsequently reused by Mendes and Kell (1998) to test the performance of
the popular software package Gepasi. The simulation software package
COPASI (Hoops et al., 2006), a direct descendant of Gepasi, is also being
profiled in this volume.

Figure 10.5 displays fluorescence changes during a fluorogenic assay
(Kuzmič et al., 1996; Peranteau et al., 1995) of the HIV protease. The
nominal enzyme concentration was 4 nM in each of the five kinetic
experiments; the nominal substrate concentration was 25 mM; the inhibitor
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an irreversible inhibitor. Results of the best-fit were obtained by using the differential
evolution algorithm (Price et al., 2005).
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concentrations (curves from top to bottom; Fig. 10.5) were 0, 1.5, 3, and
4 nM (two experiments). As is discussed elsewhere (Kuzmič, 1996), each
initial enzyme and substrate concentration was treated as an adjustable
parameter. The vertical offset on the signal axis was also treated as an
adjustable parameter for each experiment separately.

The mechanistic model is shown in Scheme 10.8, where M is the
monomer subunit of the HIV protease. The numbering of rate constants
in Scheme 10.8 was chosen to match a previous report (Mendes and Kell,
1998). The dimensions used throughout the analysis (see also final results in
Table 10.2) were mM for all concentrations, mM�1 s�1 for all second-order
rate constants, and s�1 for all first-order rate constants. The rate constants
k11 ¼ 0.1, k12 ¼ 0.0001, and k21 ¼ k41 ¼ k51 ¼ 100 were treated as fixed
parameters in the model, whereas the rate constants k22, k3, k42, k52, and k6
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were treated as adjustable parameters. To match the Gepasi test (Mendes
and Kell, 1998) using the same example problem, each rate constant was
constrained to remain less than 105 in absolute value. In the course of the
DE optimization, rate constants were allowed to span 12 orders of magni-
tude (between 10�7 and 105). Each adjustable concentration was allowed to
vary within 50% of its nominal value. An excerpt from a requisite DynaFit
script input file is shown as follows:

[task]
data ¼ progress
task ¼ fit
algorithm ¼ differential-evolution

[mechanism]
M þ M <¼¼> E : k11 k12
E þ S <¼¼> ES : k21 k22
ES ---> E þ P : k3
E þ P <¼¼> EP : k41 k42
E þ I <¼¼> EI : k51 k52
EI --> EJ : k6

[constants]
k11 ¼ 0.1
k12 ¼ 0.0001
k21 ¼ 100
k22 ¼ 300 ? (0.0000001 .. 100000)
k3 ¼ 10 ? (0.0000001 .. 100000)
k41 ¼ 100
k42 ¼ 500 ? (0.0000001 .. 100000)
k51 ¼ 100
k52 ¼ 0.1 ? (0.0000001 .. 100000)
k6 ¼ 0.1 ? (0.0000001 .. 100000)



Table 10.2 Least-squares fit of HIV protease inhibition data shown in Fig. 10.5:
Comparison of the simulated annealing (SA) algorithm as implemented in Gepasi
(Mendes and Kell, 1998) and COPASI (Hoops et al., 2006) with the differential
evolution (DE) algorithm as implemented in DynaFit (Kuzmič, 1996)

Parameter

SA (Mendes

and Kell,

1998)

SA (this

work)a DE SA/DE

k22 201.1 273.1 23.67 11.54

k3 7.352 6.517 3.922 1.66

k42 1171 1989 128.2 15.51

k52 13,140 11,120 0.00008562 130,000,000

k6 30,000 4453 0.0004599 9,700,000

[S]1 24.79 24.74 24.65 1.00

[S]2 23.43 23.46 23.37 1.00

[S]3 26.79 26.99 26.99 1.00

[S]4 32.10 20.92 14.39 1.45

[S]5 26.81 17.59 16.04 1.10

[E]1 0.004389 0.005029 0.007484 0.67

[E]2 0.004537 0.004965 0.006568 0.76

[E]3 0.005470 0.005796 0.007116 0.81

[E]4 0.004175 0.004238 0.004221 1.00

[E]5 0.003971 0.003980 0.003396 1.17

D1 �0.00801 �0.00712 �0.00508 1.40

D2 �0.00391 �0.00490 �0.00289 1.69

D3 �0.00896 �0.01395 �0.01354 1.03

D4 �0.01600 �0.01192 �0.00337 3.54

D5 �0.00379 0.00005 0.00777 0.01

Iterations 630,000 1,025,242 –b –b

Sum of

squares

0.0211024 0.0201911 0.0194526 1.04

Run

time (h)

–c 16.5d,e 1.1e 15

a Software Gepasi (Mendes and Kell, 1998) ver. 3.30.
b Iteration counts in SA and DE are not compatible.
c Running time not given in the original publication.
d Interrupted.
e IntelÒ CoreTM2 Duo T7400 microprocessor (2.16 GHz, 667 MHz bus, 4 MB cache).
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DynaFit automatically chooses the population size, based on the number
of adjustable model parameters, and on the range of values they are allowed
to span. In this case, the DE algorithm started with 259 separate estimates for
each of the 15 adjustable model parameters (five rate constants, five locally
adjusted substrate and enzyme concentrations, and five offsets on the signal
axis). A representative histogram of distribution for one of the 15 adjustable
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Figure 10.6 The initial and final distribution of the rate constant k52 in the differential
evolution (Price et al., 2005) fit of HIV protease inhibition data shown in Fig. 10.5. The
population contained 259 members.
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model parameters (the rate constant k52) is shown in the upper panel of
Fig. 10.6. Note that the 259 initial estimates of the rate constant k52 span 12
orders of magnitude. The initial random distribution of parameter values is
uniform (as opposed to Gaussian or similarly bell-shaped) on the logarithmic
scale.

The swarm of 259 ‘‘organisms,’’ each carrying a unique combination of
15 adjustable model parameters (the genotype), was allowed to evolve using
the Darwinian evolutionary principles (selection by fitness; chromosomal
crossover during the ‘‘mating’’ of population members; random genetic
mutations). After 793 generations, each of the 15 model parameters con-
verged to a relatively narrow range of values, as shown in the bottom panel
of Fig. 10.6 for the rate constant k52. The simulated best-fit model is shown
as smooth curves in Fig. 10.5. The best-fit values of adjustable model
parameters are shown in Table 10.2, where Di is offset on the signal axis
for individual data sets.

The simulated annealing (SA) algorithm (Corana et al., 1987;
Kirkpatrick et al., 1983) was chosen for comparison with DE, because it
appears to be the best performing global optimization method currently
reported in the biochemical literature (Mendes and Kell, 1998).
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The results listed in Table 10.2 show that the DE algorithm found a
combination of model parameters that lead to a significantly lower sum of
squares (i.e., a better fit) compared to the SA algorithm. Some model
parameters, such as the adjustable substrate concentrations, were very
close to identical in both data-fitting methods. Other model parameters,
such as the rate constants k52 and k6 that characterize the inhibitor properly,
differed by 6–8 orders of magnitude. The SA algorithm had to be termi-
nated manually after approximately 17 h of continued execution, and more
than one million iterations. The DE algorithm terminated automatically
after 66 min, when defined convergence criteria were satisfied.

We can conclude that, in the specific case of the HIV protease irrevers-
ible kinetics, the DE global optimization algorithm clearly performs signifi-
cantly better than the SA algorithm. However, this does not mean that the
best-fit DE parameter values listed in Table 10.2 are any closer to the true
values, when compared with the SA parameters. In fact, it appears that
neither set of parameter values should be regarded with much confidence
(see Section 5.2). Probably, the only conclusion we can make safely is that
very much more research is needed into the relative merits of global
optimization algorithms such as DE and SA—specifically, as they are applied
to the analysis of biochemical kinetic data.
5.2. Uncertainty of model parameters

Most biochemists are likely to see the uncertainty of kinetic model para-
meters expressed only as formal standard errors. Formal standard errors are
the plus-or-minus values standing next to the best-fit values of nonlinear
parameters, as reported by all popular software packages for nonlinear least-
squares regression, including DynaFit. However, it should be strongly
emphasized that formal standard errors can (and usually do) grossly underestimate
the statistical uncertainty. For a rigorous theoretical treatment of statistical
inference regions for nonlinear parameters, see Bates and Watts (1988).

Johnson et al. (2009) recently stated that DynaFit (Kuzmič, 1996) users
are provided only with the ‘‘standard errors [...] without additional aids to
evaluate the extent to which the fitted parameters are actually constrained
by the data.’’ This statement is factually false, and needs to be corrected for
the record. Since version 2.23 released in January 1997 and extensively
documented in the freely distributed user manual, DynaFit has always
implemented the profile-t search method of Bates and Watts (Bates and
Watts, 1988; Brooks et al., 1994; Watts, 1994) to compute approximate
inference regions of nonlinear model parameters.

The most recent update to DynaFit adds an additional aid to evaluate the
extent to which the fitted parameters are constrained by the data. This is a
particular modification of the well-established Monte-Carlo method
(Straume and Johnson, 1992).
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5.2.1. Monte-Carlo confidence intervals
The Monte-Carlo method (Straume and Johnson, 1992) for the determina-
tion of confidence intervals is based on the following idea. After an initial
least-squares fit using the usual procedure, the best-fit values of nonlinear
parameters are used to simulate many (typically, at least 1000) artificial data
sets. The idealized theoretical model curves (e.g., the smooth curves in
Fig. 10.5) are always the same, but the superimposed pseudo-random noise
is different every time. The 1000 slightly different sets of pseudo-experi-
mental data are again subjected to nonlinear least-squares regression. In the
end, the 1000 different sets of best-fit values for model parameters are tallied
up to construct a histogram of the parameter distribution. The range of values
spanned by each histogram is the Monte-Carlo confidence interval for the
given model parameter.
‘‘Shuffle’’ and ‘‘shift’’ Monte-Carlo methods A crucially important
part of the above Monte-Carlo procedure is the simulation of the
pseudo-random noise to be superimposed on the idealized data.
How should we choose the statistical distribution, from which the
pseudo-random noise is drawn? Usually, it is assumed that the pseudo-
random experimental noise has Normal or Gaussian distribution
(Straume and Johnson, 1992), and that the individual data points are
statistically independent or uncorrelated. If so, the standard deviation of
this Gaussian distribution (the half-width of the requisite bell curve) can be
taken as the standard error of fit from the first-pass regression analysis of the
original data. However, we have recently demonstrated (Kuzmič et al.,
2009) that experimental data points recorded in at least one particular
enzyme assay are not statistically independent. Instead, we see a strong
neighborhood correlation among adjacent data points—spanning up to six
nearest neighbors.

To reflect the possible serial correlation among nearby data points,
DynaFit (Kuzmič, 1996) now allows two variants of the Monte-Carlo
method, which could be called the ‘‘shift’’ Monte-Carlo and ‘‘shuffle’’
Monte-Carlo algorithms. In both cases, instead of generating presumably
Gaussian errors to be superimposed on the idealized data, we merely
rearrange the order of the actual residuals generated by the first-pass least-
squares fit. In the shuffle variant, the residuals are reused in truly randomized
order. In the shift variant of the Monte-Carlo algorithm, the order of the
residuals is preserved, but the starting position changes.

For example, let us assume that a particular reaction progress curve (such
as one of those shown in Fig. 10.5) contains 300 experimental data points.
After the first-pass least-squares fit, we could simulate up to 300 synthetic
progress curves by superimposing the ordered sequence of residuals. In one
such simulated curve, the first synthetic data point would be assigned
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residual No. 17, the second data point residual No. 18, and so on. At the
end of the ordered sequence of residuals, we wrap around to the beginning
(i.e., data point No. 300 � 17 ¼ 283 will receive residual No. 1). In
another simulated curve, the first data point would be generated from
residual No. 213, the second data point from residual No. 214, and so on.

The practical usefulness of the shift and shuffle variants of the Monte-
Carlo method (Straume and Johnson, 1992) is that it avoids having to make
assumptions about the statistical distribution (Gaussian, Lorentzian, etc.) of
the random noise that is inevitably present in the experimental data. Inter-
estingly, the original conception of the Monte-Carlo method (Dwass, 1957;
Nichols and Holmes, 2001) was, in fact, based on permuting existing popu-
lation members, rather than making distributional assumptions.

Two-dimensional histograms The ‘‘shift’’ Monte-Carlo confidence inter-
vals for rate constants k22, k3, and k42 from the least-squares fit of HIV
protease inhibition data are shown in Fig. 10.7. The best-fit values of each
model parameter are marked with a filled triangle. The rate constant k3 is
characterized by a relatively narrow confidence intervals (spanning from
approximately 3 to 9 s�1). In contrast, the Monte-Carlo confidence inter-
vals for rate constants k22 and k42 not only are much wider (approximately 4
orders of magnitude for k42) but also are clearly bi-modal. The appearance
of such double-hump histogram for any parameter is a strong indication that
(a) the model is probably severely over-parameterized, and (b) the data
could very likely be fit to at least two alternate mechanisms.

In order to better diagnose possible statistical coupling between pairs of
rate constants, beyond what conventional Monte-Carlo histograms can
provide, DynaFit now produces two-dimensional histograms such as those
shown in Fig. 10.8. The thin solid path enclosing each histogram in
Fig. 10.8 is the convex hull—the shortest path entirely enclosing a set of
points in a plane. The approximate area occupied by the convex hull is a
useful empirical measure of parameter redundancy.

If any two rate constants were truly statistically independent, the
corresponding two-dimensional Monte-Carlo histogram plot would
resemble a circular area with the highest population density appearing in
the center. We can see in Fig. 10.8 the rate constants k22 and k42 are
clearly correlated, as is indicated by the elongated crescent shape of the
two-dimensional histogram.

In summary, with regard to assessing the statistical uncertainty of non-
linear model parameters, DynaFit (Kuzmič, 1996) has always allowed
the investigator to perform the full search in parameter space, using the profile-t
method (Bates and Watts, 1988; Brooks et al., 1994; Watts, 1994). As a
result of such detailed analysis, the investigator often must face the unpleas-
ant fact that the confidence regions for rate constants, equilibrium constants,
or derived kinetic parameters (e.g., Michaelis constants) not only are much
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Figure 10.7 Monte-Carlo confidence intervals for model parameters: Distribution
histograms for rate constants k22, k3, and k42 from least-squares fit of HIV protease
inhibition data shown in Fig. 10.5.
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larger than the formal standard errors would suggest, but perhaps also larger
than would appear ‘‘publishable.’’

However, it must be strongly emphasized that the formal standard errors
for nonlinear parameters reported by DynaFit should never be given much
credence. The program reports them mostly for compatibility with other
software package typically used by biochemists. In order to obtain a more
realistic interpretation of the experimental data, DynaFit users are encour-
aged to go beyond formal standard errors, and utilize both the previously
available profile-t method (Brooks et al., 1994), and now also the modified
Monte-Carlo method (Straume and Johnson, 1992).
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5.3. Model-discrimination analysis

The problem of selecting the most plausible theoretical model among
several candidates (e.g., deciding whether a given enzyme inhibitor is
competitive, noncompetitive, or mixed-type) represents one of the most
challenging tasks facing the data analyst. Myung and Pitt (2004) and Myung
et al. (2009) reviewed recent developments in earlier volumes of this series.
This section contains only a very brief summary of the model-discrimina-
tion features available in DynaFit (Kuzmič, 1996). The reader is referred to
the full program documentation available online (http://www.biokin.com/
dynafit/).

DynaFit (Kuzmič, 1996) currently offers two distinct methods for statis-
tical model discrimination. First, for nested fitting models, the updated
version of DynaFit continues to offer the F-statistic method previously
discussed by Mannervik (1981, 1982) and many others. Secondly, for any
group of alternate models, whether nested or nonnested, DynaFit uses the
second-order AICc (Burnham and Anderson, 2002) to perform model
discrimination.

Briefly, the AICc criterion is defined by Eq. (10.1), where S is the
residual sum of squares; nP is the number of adjustable model parameters;
and nD is the number of experimental data points. For each candidate model
in a collection of alternate models, DynaFit computes DAICc as the differ-
ence between AICc for the particular model, and the AICc for the best
model (with the lowest value of AICc). Thus, the best model is by definition
assigned DAICc ¼ 0. The Akaike weight, wi, for the ith model in a collection
of m alternatives, is defined by Eq. (10.2):

http://www.biokin.com/dynafit/
http://www.biokin.com/dynafit/
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Author’s personal copy
AICc ¼ �logS þ 2nP þ 2nPðnP þ 1Þ
nD � nP � 1

ð10:1Þ

wi ¼
exp 1

2
DAICðiÞ

c

� �
Xm

i¼1
exp 1

2
DAICðiÞ

c

� � ð10:2Þ

Burnham and Anderson (2002) formulated a series of empirical rules for
interpreting the observed DAICc values for each alternate fitting model,
stating that DAICc > 10 might be considered a sufficiently strong evidence
against the given model.

Practical experience with the Burnham and Anderson rule suggests that it
is applicable only when the number of experimental data points is a reason-
ably small multiple of the number of adjustable model parameters (e.g.,
nD < 20 � nP). In some cases, the number of data points is verymuch larger.
For example, in certain continuous assays or stopped-flowmeasurements, it is
not unusual to collect thousands of experimental data points in order to
determine two or three kinetic constants. In such cases, the DAICc > 10
rule has been found unreliable. In general, a candidatemodel should probably
be rejected only if its Akaike weight, wi, is smaller than approximately 0.001.

The DynaFit notation needed to compare a series of alternate models,
and to select the most plausible model if a selection is possible, is illustrated
on the following input file fragment. Please note the use of question marks
after each (arbitrarily chosen) model name. This notation instructs DynaFit
to evaluate the plausibility of the given model, in comparison with other
models that are marked identically.

[task]
model ¼ Competitive ?

[mechanism]
E þ S <¼¼¼> E.S : Ks dissoc
E.S ---> E þ P : kcat

E þ I <¼¼¼> E.I : Ki dissoc
...
[task]

model ¼ Uncompetitive ?
[mechanism]

E þ S <¼¼¼> E.S : Ks dissoc
E.S ---> E þ P : kcat

E.S þ I <¼¼¼> E.S.I : Kis dissoc
...
[task]

model ¼ Mixed-type noncompetitive ?
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[mechanism]
E þ S <¼¼¼> E.S : Ks dissoc
E.S ---> E þ P : kcat
E þ I <¼¼¼> E.I : Ki dissoc
E.S þ I <¼¼¼> E.S.I : Kis dissoc

...
[task]

model ¼ Partial mixed-type ?
[mechanism]

E þ S <¼¼¼> E.S : Ks dissoc
E.S ---> E þ P : kcat
E þ I <¼¼¼> E.I : Ki dissoc
E.S þ I <¼¼¼> E.S.I : Kis dissoc
E.S.I ---> E.I þ P : kcat’

...

When DynaFit is presented with a series of alternate models in a similar
way, it will fit the available experimental data to each postulated model in
turn. After the last model in the series is fit to the data, the program presents
to the user a summary table listing the values of DAICc. The AIC-based
model discrimination feature available in DynaFit has been utilized in a
number of reports (Błachut-Okrasinska et al., 2007; Collom et al., 2008;
Gasa et al., 2009; Jamakhandi et al., 2007; Kuzmič et al., 2006).
6. Concluding Remarks

DynaFit (Kuzmič, 1996) has proved quite useful in a number of
projects, as is evidenced by the number of journal publications that cite
the program. It is hoped that the software will continue to enable innovative
research. This section offers a few closing comments on DynaFit enhance-
ments currently in development.
6.1. Model discrimination analysis

The AIC criterion is based solely on the number of optimized parameters and
the corresponding sum of squares. The degree of uncertainty associated with
each particular set of model parameters is completely ignored. However, if
two candidate models with exactly identical number of adjustable para-
meters hypothetically produced exactly identical sums of squares, but one of
these models was associated with significantly narrower confidence regions,
then this model should be preferred (Myung and Pitt, 2004). The minimum
description length (MDL) also known as stochastic complexity (SC)
measure (Myung and Pitt, 2004) would clearly be a more appropriate
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model-discrimination criterion. Unfortunately, for technical reasons, the
MDL criterion is extremely difficult to compute (Myung et al., 2009).
Investigations are currently ongoing into at least an approximate
computation of the MDL/SC test.
6.2. Optimal design of experiments

Most biochemists—probably like most experimentalists—prefer to do the
experiment first, then proceed to data analysis, and finally to publication.
However, to paraphrase the eminent statistician G. E. P. Box (Box et al.,
1978), no amount of the most ingenious data analysis can salvage a poorly
designed experiment. When examining the extant enzymological literature,
one oftenwonders exactly how the concentrationswere chosen.Whywas an
exponential series (1, 2, 4, 8, 16) used for substrate concentrations, instead of
a linear series (3, 6, 9, 12, 15) (Kuzmič et al., 2006)?Was it by design, or was it
because ‘‘that’s howwe always did it’’? Similar choices profoundly affect how
much—if anything—can be learned from any given experiment. A well-
established statistical theory of optimal experiment design (Atkinson and
Donev, 1992; Fedorov, 1972) has been used by biochemical researchers in
the past (Duggleby, 1981; Endrényi, 1981; Franco et al., 1986). At the
present time,DynaFit is beingmodified to implement these ideas, and deploy
them for computer-assisted rational design of experiments.
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Briknarová, K., Zhou, X., Satterthwait, A., Hoyt, D., Ely, K., and Huang, S. (2008).
Structural studies of the SET domain from RIZ1 tumor suppressor. Biochem. Biophys.
Res. Commun. 366, 807–813.

Brooks, I., Watts, D., Soneson, K., and Hensley, P. (1994). Determining confidence
intervals for parameters derived from analysis of equilibrium analytical ultracentrifugation
data. Methods Enzymol. 240, 459–478.

Burnham, K. B., and Anderson, D. R. (2002). Model Selection and Multimodel Inference:
A Practical Information-Theoretic Approach. Springer-Verlag, New York.

Bzowska, A. (2002). Calf spleen purine nucleoside phosphorylase: Complex kinetic mecha-
nism, hydrolysis of 7-methylguanosine, and oligomeric state in solution. Bioch. Biophys.
Acta 1596, 293–317.

Bzowska, A., Koellner, G., Stroh, B. W.-K. A., Raszewski, G., Holý, A., Steiner, T., and
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Endrényi, L. (1981). Design of experiments for estimating enzyme and pharmacokinetic
parameters. In ‘‘Kinetic Data Analysis’’ (L. Endrényi, ed.), pp. 137–169. Plenum Press,
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Jamakhandi, A. P., Kuzmič, P., Sanders, D. E., and Miller, G. P. (2007). Global analysis of
protein–protein interactions reveals multiple cytochrome P450 2E1reductase complexes.
Biochemistry 46, 10192–10201.

Johnson, M. L. (1992). Why, when, and how biochemists should use least squares. Anal.
Biochem. 206, 215–225.

Johnson, M. L. (1994). Use of least-squares techniques in biochemistry. Methods Enzymol.
240, 1–22.

Johnson, M. L., and Frasier, S. G. (1985). Nonlinear least-squares analysis.Methods Enzymol.
117, 301–342.

Johnson, K. A., Simpson, Z. B., and Blom, T. (2009). Global Kinetic Explorer: A new
computer program for dynamic simulation and fitting of kinetic data. Anal. Biochem. 387,
20–29.

King, E. L., and Altman, C. (1956). A schematic method of deriving the rate laws for
enzyme-catalyzed reactions. J. Phys. Chem. 60, 1375–1378.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. P. (1983). Optimization by simulated annealing.
Science 220, 671–680.
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