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a b s t r a c t

For enzymatic progress curves conforming to the Michaelis–Menten mechanism Eþ S � ES ! Eþ P,
the minimal fitting model cast as a system of numerically integrated differential equations is the simpli-
fied, irreversible Van Slyke–Cullen mechanism Eþ S ! ES ! Eþ P. The best-fit value of the bimolecular
association rate constant is identical to the specificity constant kcat=KM. An illustrative example involves a
fluorogenic continuous assay of the HIV protease, analyzed by the differential-equation oriented software
package DYNAFIT [P. Kuzmic, Anal. Biochem. 237 (1996) 260].

� 2009 Elsevier Inc. All rights reserved.

This report proposes a shortcut that has proved very useful in
the practical analysis of enzymatic progress curve, using advanced
software tools that represent reaction mechanisms in terms of
microscopic rate constants. The problem is that the experimental
progress curves can never fully support the Michaelis–Menten
mechanism, Eþ S � ES! Eþ P, which is the ‘‘true” reaction
mechanism in most cases. The trick is to invoke the irreversible
Van Slyke–Cullen mechanism, Eþ S ! ES ! Eþ P. We know in
advance that this mechanism is physically incorrect (the binding
of substrates to enzymes is always reversible). It turns out, how-
ever, that even with the ‘‘wrong” model we can accomplish some-
thing very useful in the end.

Several currently available software tools for the analysis of en-
zyme kinetic data (e.g. KINSIM [1], DYNAFIT [2], or COPASI [3]) al-
low the user to specify the postulated reaction mechanism in terms
of conventional stoichiometric equations. For example, the user
can type Eþ S <¼¼> ES --> Eþ P on the keyboard, to represent
the classic Michaelis–Menten mechanism [4] (Scheme 1), and the
software automatically derives the underlying system of ordinary
differential equations (ODE) as the mathematical model for
reaction progress.

When biochemistry students and researchers first encounter
software tools that allow model specification in terms of micro-
scopic rate constants, the Michaelis–Menten mechanism often is
the first model to experiment with. Frequently, it is also the first
source of disappointment, because only two out of three micro-
scopic rate constants in Scheme 1 can be uniquely determined
from experimental progress curves. In the realm of traditional stea-
dy-state kinetic analysis, this restriction parallels our abilility to

determine only two of three possible steady-state kinetic con-
stants: the turnover number kcat, the specificity constant kcat=Km,
and the Michaelis constant Km.

One obvious solution to this problem would be to set the bimo-
lecular association rate constant k1 to some arbitrary value that,
importantly, must be sufficiently high (k1 must always be higher
than kcat=Km, because kcat=Km ¼ k1k3=ðk2 þ k3Þ) and keep it fixed
in the model. Based on typical experimental values of bimolecular
association rate constants [5], the value of k1 ¼ 108 M�1 s�1 might
appear to be safe choice, as has been advocated elsewhere [6,7].
However, for the DinB homologue DNA polymerase from Sulfolobus
solfataricus, k1 ¼ 1:4� 109 M�1 s�1 [8], and there are other
similar examples. Should we then set k1 ¼ 1010 M�1 s�1 or even
k1 ¼ 1020 M�1 s�1? One serious problem with arbitrarily ratchett-
ing up the bimolecular association rate constant is that, at extre-
mely high values of k1, the underlying system of differential
equations becomes numerically unsolvable (a ‘‘stiffness” problem
[9]).

I propose a different solution—a shortcut, in a way—based on
the Van Slyke–Cullen mechanism [10] shown in Scheme 2.

The microscopic rate constant k�1 in Scheme 2 is now an ‘‘appar-
ent” bimolecular association rate constant, exactly equivalent to
the specificity constant kcat=Km. A representative experimental data
set, from a continuous fluorogenic assay of the HIV protease [11,12],
is shown in Fig. 1. The smooth model curve corresponds to the best-
fit values k�1 ¼ ð4:27� 0:02Þ lM�1 s�1 and k3 ¼ 8:7� 0:2 s�1. The
full listing of a DYNAFIT [2] input file is shown in the Appendix.

An exactly identical model curve (within eight significant digits)
was obtained by fitting the same data to the Michaelis–Menten
model (Scheme 1), in which k1 was held constant at k1 ¼
100 lM�1 s�1. The best-fit values of the adjustable rate constants
were k2 ¼ 193 s�1 and k3 ¼ 8:7 s�1, from which kcat=Km ¼ k1k3=

ðk2 þ k3Þ ¼ 4:3 lM�1 s�1—numerically identical to k�1 in the Van
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Slyke–Cullen model. Note that k3 ¼ kcat is also identical in both
models.

Most importantly, an exhaustive search in the multidimen-
sional parameter space for all plausible values of k1, using the pro-
file-t algorithm of Bates and Watts [13–15], produced k1 ¼
4:3 lM�1 s�1 as the lower limit on k1 (results now shown). Note
that, as is expected based on theoretical considerations (kcat=Km

is necessearily the lowest estimate for k1), this lowest limiting value
for k1 is exactly the same as the best-fit value for k�1. This exhaustive
search for parameter limits is a computationally very intensive
procedure. For example, a recently described systematic search
method [7] may take up many minutes of computing time even
for relatively simple mechanisms.

In a way, we have gained something quite valuable by trading
the physically realistic but experimentally underdetermined
Michaelis–Menten mechanism for the physically implausible (on
account of its irreversibility) Van Slyke–Cullen model. In particular,
we do not have to undertake computationally expensive system-
atic searches for the lowest plausible value of k1, to make sure that

we do not accidentally ‘‘freeze” it in the fitting model at some arbi-
trary value that might be too low. The lowest possible value of k1

that is consistent with the given set of experimental data is simply
the best-fit value of k�1.

Experience shows that at least some enzymologists initially
hesitate about employing the ‘‘wrong” Van Slyke–Cullen mecha-
nism for routine analysis of important laboratory data. However,
as was pointed out by a reviewer, the classic Michaelis–Menten
mechanism is also physically unrealistic, because the chemical
transformation step and the subsequent product dissociation are
treated as a single event. To quote a famous statistician, this proves
that ‘‘essentially, all models are wrong, but some are useful”
[16, p. 424].

Appendix A

The following DYNAFIT [2] script is used to fit experimental
data in a two-column (time vs fluorescence intensity) text file 16-

2d.txt to the Van Slyke–Cullen mechanism in Scheme 2, to generate
the best-fit model curve in Fig. 1.

[task]

task = fit | data = progress

[mechanism]

E+S ——> E.S : k1

E.S ——> E+P : k3

[constants]

k1 = 1 ? | k3 = 10 ?

[concentrations]

E = 0.01, S = 1

[responses]

P = 15 ?

[data]

file ./hiv-protease/data/16-2d.txt

delay = 5 | offset = 0 ?

[output]

directory ./hiv-protease/output

[end]
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Figure 1. Jagged curve: Experimental data from the fluorogenic assays of HIV
protease (½E�0 ¼ 10 nM, ½S�0 ¼ 10lM; see Refs. [11,12] for details). Smooth curve:
Least-squares fit either to the Michaelis–Menten mechanism (Scheme 1) or to the
Van Slyke–Cullen mechanism (Scheme 2).
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