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A generalized numerical treatment of steady-state enzyme kinetics is presented. This new approach relies on
automatic computer derivation of the underlying mathematical model (a system of simultaneous nonlinear
algebraic equations) from a symbolic representation of the reaction mechanism (a system of biochemical
equations) provided by the researcher. The method allows experimental biochemists to analyze initial-rate
enzyme kinetic data, under the steady-state approximation, without having to use any mathematical
equations. An illustrative example is based on the inhibition kinetics of p56lck kinase by an ATP competitive
inhibitor. A computer implementation of the new method, in the modified software package DYNAFIT
[Kuzmič, P. (1996) Anal. Biochem. 237, 260–273], is freely available to all academic researchers.

© 2009 Published by Elsevier B.V.

1. Introduction

Enzyme kinetics—together with structural studies (X-ray crystal-
lography, NMR spectroscopy, molecular modeling) and biological
assays—is one of several important experimental methods employed
for the study of inhibitors of protein kinases. One serious disadvantage
of the formal kinetic analysis is its mathematical complexity. Even in
the absence of inhibitors, a traditional algebraic rate equation for a
protein kinase derived under the steady-state approximation [1]
might be exceedingly complex, while still being applicable only to
certain special experimental situations. Specifically, under the
traditional algebraic formalism we must assume that the enzyme
concentration is infinitely smaller than the concentrations of all
substrates.

The mathematical complexity substantially increases when inhi-
bitors are considered, in addition to substrates, and a new funda-
mental problem emerges in the case of “tight binding” inhibitors [2].
The traditional algebraic formalism for initial rate enzyme kinetics is
unsuitable for handling tight binding inhibitors, except in the special
case where the inhibitor forms a 1:1 complexwith the enzyme [2]. For
example, if a hypothetical tight binding inhibitor were to bind
simultaneously (and “tightly”) both to the active site and to an
allosteric site, the resulting algebraic rate equation would be so
complex as to be practically unusable.

To allow the study of “tight-binding” enzyme inhibitors without
any restrictions being placed on the number of binding sites, or on any
other particular characteristics of the molecular mechanism, we have
previously described [3] a general numerical approach to initial-rate
enzyme kinetics under the rapid-equilibrium approximation [1]. The
two major advantages of this general numerical approach are
convenience and generality.

The iterative numerical approach is indeed convenient, because it
allows the researcher to specify the postulated biochemical mecha-
nism without the use of any mathematical equations. Instead, we can
supply the description of the biochemical system in the familiar
biochemical notation, using stoichiometric equations (e.g., E+A
b==N E.S –> E+P for the Michaelis–Menten mechanism). A suitable
computer algorithm [4,5] then automatically translates the biochem-
ical notation into the corresponding mathematical structures.

The secondmajor advantage of the general numerical approach [3]
is that it applies not only to “classical” inhibition, where the
concentrations of all inhibitors are assumed to be infinitely larger
than the concentration of the enzyme, but also to “tight binding”
systems, where the concentrations of all components can be in
principle comparable in magnitude. This opens the possibility of
studying the detailed kinetic behavior of therapeutic enzyme
inhibitors, which typically bind very tightly to the target enzyme.

The general numerical approach as previously described [3]
applies only to enzyme–inhibitor systems under the rapid-equilibrium
approximation, where we assume that the binding and dissociation of
all substrates and other ligands is infinitely rapid, when compared

Biochimica et Biophysica Acta 1804 (2010) 635–641

E-mail address: pksci01@biokin.com.
URL: http://www.biokin.com.

1570-9639/$ – see front matter © 2009 Published by Elsevier B.V.
doi:10.1016/j.bbapap.2009.07.028

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r.com/ locate /bbapap



Author's personal copy

with the rate of the chemical step (in the case of protein kinases, the
phosphoryl transfer step). However, there is no reason to believe that
the rapid-equilibrium assumption is valid in every protein kinase
assay. For example, Keshwami and Harris [6] recently established that,
at least in the specific case of the fully activated S6K1 protein kinase,
ADP release is rate limiting.

In this paper, we describe an extension and further generalization
of the previously described numerical treatment of initial-rate enzyme
kinetics [3]. Here we remove the simplifying rapid-equilibrium
approximation, and invoke instead the more general steady-state
approximation. Thus, in the specific case of protein kinases, we no
longer assume that the phosphoryl transfer step is strictly rate
limiting.

2. Theory

2.1. Definitions and assumptions

Let nO be the number of reactants appearing in the overall reaction
described by the stoichiometric vector s (see below for an illustrative
example of all matrices and vectors utilized in this study). Unlike in
the classical algebraic formalism [1], we do not assume that overall
reactants are present at concentrations very much higher than the
enzyme.

Let nM be the number of modifiers, such as inhibitors or activators.
For example, we could have a mixture of two inhibitors (perhaps
involving a prodrug, a stereoisomer, or a metabolite), either of which
can be “tight binding” [2], and which can bind to any number of
enzyme forms with any stoichiometry. With only one inhibitor being
present, and no activators, we typically have nM=1.

Let nE be the number of elements, or component species [7], that
appear in the reactionmechanism. These include the overall reactants,
the modifiers, and the enzyme catalyst. Thus, nE=nO+nM+1.

Let nC be the number of distinct enzyme complexes that appear in
the molecular mechanism.

Let nS be the total number of molecular species participating in the
mechanism. Thus, nS=nE+nC.

Let nR be the number of elementary or microscopic reactions that
appear in the overall molecular mechanism. Thus, the stoichiometric
matrix [3,7], S, has nR rows and nS columns.

Let the stoichiometric matrix S be ordered such that the first nE
columns are assigned to the component species (so that the last nC
columns are assigned to enzyme complexes). The molecular species
are ordered identically in the steady-state concentration vector, c~.

Let T be the truncated stoichiometric matrix, taken as the last nC
columns of the complete stoichiometric matrix S. Thus, the truncated
matrix T describes the interactions of the nC enzyme complexes.

Let F be a formula matrix [3,7] with nS columns and nE rows,
expressing the composition of all molecular complexes in terms of
components. The mass balance equations for component species can
be written as shown in Eq. (1), where the left-hand side is an nE-
vector and c(t) is a vector of total or analytic concentrations.

0 = Fc̃ −c tð Þ ð1Þ

Let v be the nR-vector of elementary or microscopic rate terms
defined, in terms of the stoichiometric matrix S, as shown in Eq. (2)
where ki (i=1,…,nR) are microscopic rate constants, and δj is defined
by Eq. (3).

vi = ki
YnS
j=1

c
−δjSi; j
j ; i = 1;: : :;nR ð2Þ

δj =
1 if Si;j b 0
0 if Si;j z 0

�
ð3Þ

Let us now formally invoke the steady-state approximation, as
follows. We assume that immediately after the enzyme, the
substrates, and any optional modifiers (inhibitors and activators)
are brought into contact, the reaction system passes through a
relatively short transient phase. The amount of substrates consumed
during the transient phase is assumed to be negligibly small compared
to the total initial amount of substrates. We will further assume that
during the subsequent steady-state phase of the enzyme reaction, the
rate of change in the concentrations of all enzyme forms (enzyme
complexes and the free enzyme) is negligibly small compared to the
rate of change in the substrate and product concentrations.

2.2. Composition at steady state, allowing for “tight binding”

With the above assumptions and definitions, the full system of
first-order ordinary differential equations, expressing the rate of
change in species concentrations, can be written as shown in Eq.
(4), where S′ is the transpose of S, and the dot accent (c

.
)

represents first derivatives with respect to time. The steady-state
condition is shown as Eq. (5), where the left-hand side is an nS-
vector. Eq. (5) represents a system of simultaneous nonlinear
algebraic equations for the unknown concentrations of species at
steady state.

c ̇ = SVv ð4Þ

0 = SVv ð5Þ

The system of nonlinear Eqs. (5) does not have a unique solution,
because these equations are linearly dependent. We can remove this
linear dependence by replacing the first nE nonlinear equations by the
mass balances for component species. Thus, the right-hand side of Eq.
(5) can be partitioned as shown in Eq. (6).

0¼ Fc̃ −c tð Þ

TVv

� �
ð6Þ

Finally, the composition at steady-state can be computed by solving
the mixed system of linear and nonlinear algebraic Eqs. (6) by an
appropriate iterative method.

2.3. Initial rate law

The initial reaction rate can be expressed in terms of the steady-
state concentrations of species as shown in Eq. (7), where p is the
index of the first product appearing on the right-hand side the
overall reaction. The observable initial rate of an enzyme reaction is
defined by Eq. (8), where Δr is the difference molar response
coefficient, and r in Eq. (9) is the vector of molar response
coefficients (e.g., extinction coefficients in UV/Vis spectroscopy) for
the reactants.

vucṗ =
XnR
i=1

Si;pkic̃
Si;p
p ð7Þ

vobs = Δr v ð8Þ

Δr = sVr ð9Þ

It should be noted that the choice of specifically the first overall
product (index p above) is arbitrary; any other product appearing
on the right-hand side of the overall reaction would suffice, because
the order in which either substrates or reaction products are
written down in the overall reaction is also arbitrary. The above
formalism is fully applicable to reversible reactions, because any
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contribution of the reverse reaction would be appropriately
captured by a negative term in the summation in Eq. (7).

2.4. Algorithmic implementation

The above procedure is now implemented in the DynaFit software
package [4,5]. The program scans textual input representing an
arbitrary reaction mechanism, and, in the process, automatically
constructs the vectors and matrices v, s, S, T, and F defined above.
Once these matrices are appropriately populated, the software then
solves the nonlinear algebraic system (6) by using the multi-
dimensional Newton–Raphson method [8, p. 379].

2.5. Illustrative example

Scheme 1 represents the simplest possible mechanism for
protein kinase inhibition. The enzyme follows the “Ordered
Sequential Bi Uni” catalytic mechanism [1], and the inhibitor
binds only to the free enzyme. This reaction scheme implies that
(a) the release of the first product is rate limiting, and (b) the
experimental conditions are rendering the assay essentially irre-
versible. However, our general numerical formalism applies equally
to any arbitrary mechanism.

To represent the steady-state initial rate problem corresponding to
Scheme 1 in DynaFit, the input file contains the following text:

½task�
data ¼ rates
approximation ¼ steady−state

½reaction� j A þ B −−−N P
½enzyme� j E
½modifiers� j I
½mechanism�
E þ A b¼¼¼N E:A : k1 k2
E:A þ B b¼¼¼N E:A:B : k3 k4
E:A:B −−−−N E þ P : k5
E þ I b¼¼¼N E:I : k6 k7

When DynaFit scans the above text fragment, it automatically
populates the stoichiometric matrix corresponding to Scheme 1,
given by Eq. (10). Similarly, DynaFit automatically derives the
truncated stoichiometric matrix, defined in Eq. (11); the formula
matrix F, shown in Eq. (12); and the stoichiometric vector for the
overall reaction A+B→P, Eq. (13). For clarity, all zero entries in
the matrices below are represented by the dot symbol.

A B P I E EA EAB EI

S =

k1
k2
k3
k4
k5
k6
k7

−1 � � � −1 + 1 � �
+ 1 � � � + 1 −1 � �
� −1 � � � −1 + 1 �
� + 1 � � � + 1 −1 �
� � + 1 � + 1 � −1 �
� � � −1 −1 � � + 1
� � � + 1 + 1 � � + 1

0
BBBBBBBB@

1
CCCCCCCCA
ð10Þ

EA EAB EI

T =

k1
k2
k3
k4
k5
k6
k7

+ 1 � �
−1 � �
−1 + 1 �
+ 1 −1 �
� −1 �
� � + 1
� � −1

0
BBBBBBBB@

1
CCCCCCCCA

ð11Þ

E A B P I EA EAB EI

F =

E
A
B
P
I

1 � � � � 1 1 1
� 1 � � � 1 1 �
� � 1 � � � 1 �
� � � 1 � � � �
� � � � 1 � � 1

0
BBBB@

1
CCCCA

ð12Þ

A B P I E EA EAB EI
s = −1 −1 + 1 � � � � �ð Þ ð13Þ

The DynaFit software internally constructs the initial-rate model as
follows. The vector of elementary rate terms is

v =

k1 cE cA
k2 cEA
k3 cEA cB
k4 cEAB
k5 cEAB
k6 cE cI
k7 cEI

0
BBBBBBBB@

1
CCCCCCCCA
: ð14Þ

The differential-equation system (Eq. (4)), internally derived by
DynaFit, is defined by Eqs. (15–22). Please note that the right-hand
sides of Eq. (15–22) are obtained simply as the matrix product S′ v.

c ̇A = − k1 cE cA + k2 cEA ð15Þ

c ̇B = − k3 cEA cB + k4 cEAB ð16Þ

c ̇P = + k5 cEAB ð17Þ

c ̇ I = − k6 cE cI + k7 cEI ð18Þ

c ̇E = − k1 cE cA + k2 cEA + k5 cEAB − k6 cE cI + k7 cEI ð19Þ

c ̇EA = + k1 cE cA − k2 cEA − k3 cEAB cB + k4 cEAB ð20Þ

c ̇EAB = + k3 cEA cB − k4 + k5ð ÞcEAB ð21Þ

c ̇EI = + k6 cE cI − k7 cEI ð22Þ

The steady-state condition is obtained by setting all left-hand sides
above to zero, which produces the system of simultaneous
nonlinear algebraic (Eqs. (23–30)), where the concentrations at
any arbitrary time c have been replaced by the steady-state
concentrations c~. The nonlinear system (Eq. (23–30)) cannot have
a unique solution, because of linear dependence among individual
equations. For example, Eq. (26) is obtained simply by multiplying
Eq. (30) by minus one.

0 = − k1 c̃E c̃A + k2 c̃EA ð23Þ

0 = − k3 c̃EA c̃B + k4 c̃EAB ð24Þ

0 = + k5 c̃EAB ð25Þ

0 = − k6 c̃E c̃I + k7 c̃EI ð26Þ

Scheme 1.
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0 = − k1 c̃E c̃A + k2 c̃EA + k5 c̃EAB − k6 c̃E c̃I + k7 c̃EI ð27Þ

0 = + k1 c̃E c̃A − k2 c̃EA − k3 c̃EAB c̃B + k4 c̃EAB ð28Þ

0 = + k3 c̃EA c̃B − k4 + k5ð Þ c̃EAB ð29Þ

0 = + k6 c̃E c̃I − k7 c̃EI ð30Þ

To remove this linear dependence, DynaFit replaces the first nE
nonlinear equations in the system (Eqs. (23–30)) by the mass
balances for the component species, represented by the vector
Fc̃ −c tð Þ.

0 = c̃A + c̃EA + c̃EAB −c tð Þ
A ð31Þ

0 = c̃B + c̃EAB −c tð Þ
B ð32Þ

0 = c̃P −c tð Þ
P ð33Þ

0 = c̃I + c̃EI −c tð Þ
I ð34Þ

0 = c̃E + c̃EA + c̃EAB + c̃EI −c tð Þ
E ð35Þ

The concentrations of all molecular species at steady state are then
computed by iteratively solving the combined system of Eqs.
(28–35), which corresponds to the general Eq. (6) above. The
intrinsic initial rate is computed by applying the general formula
(Eq. (7)), which, when applied to Scheme 1, turns into Eq. (36).
Finally, the observable initial rate is computed by using Eq. (37).

v = k5 c̃EAB ð36Þ

vobs = rP − rA − rBð Þv ð37Þ

All these manipulations and derivations are done within DynaFit
completely transparently to the user; they are described here
merely for illustration purposes. The only required input is the
symbolic description of the system in the stoichiometric notation
E+A b===N E.A : k1 k2, etc.

3. Applications

In this section we give two examples illustrating the usefulness of
the general numerical models for inhibition of protein kinases under
the steady-state approximation.

3.1. Simulation study: inhibition of cAMP-dependent kinase by
bisubstrate analog inhibitors

The main purpose of this heuristic simulation experiment is
twofold. First, it verifies that our generalized matrix algorithm
produces numerically correct results, by comparing the simulated
initial rates with the traditional algebraic method (under the special
conditions where the algebraic method is applicable). Secondly, the
example illustrates the important general issue of thermodynamic
cycles.

The reaction mechanism shown in Scheme 2 represents inhibition
of cAMP-dependent kinase by a hypothetical bisubstrate analog
inhibitor [9]. For clarity, only numerical indices of rate constants are
shown (e.g., “1” stands for k1). The approximate values of most rate
constants k1 through k18 were chosen on the basis of literature
reports [9-12] (Table 1).

The inhibition mechanism shown in Scheme 2 brings up the
important issue of thermodynamic cycles. Not all rate constants in
Scheme 2 can have arbitrary values. Instead, one of eight rate
constants in the cycle defined by species E–EA–EAB–EB–E must be
defined in terms of the remaining seven constants, in order to satisfy
the equality k1k5k8k10=k2k6k7k9 (see Scheme 3).

It may not be straightforward to decide which of the rate constants
that appear in a thermodynamic cycle should be defined in terms of
remaining rate constants. In the specific case of cAMP-dependent
kinase, Kong and Cook [10] had independently measured the values of
rate constants for both the association and the dissociation of MgATP
(k1, k2), as well as the association and dissociation rate constants for a
particular peptide substrate (k7, k8). The equilibrium dissociation
constant k6/k5 has also been determined; in the case of Kemptide
(LRRASLG) substrate, it is known that k6/k5=200 μM1 [12]. Based on
these considerations, we have arbitrarily decided to express the rate
constant k10 as k2k6k7k9/k1k5k8.

The dotted lines in Scheme 2 represent additional binding and
dissociation steps that could, in principle, be included in the
mechanism. We have purposely not included them, in order to
reduce the number of thermodynamic cycles. In polycyclic reaction
mechanisms, the number of thermodynamic constraints quickly

Scheme 2.

Table 1
Numerical values of rate constants appearing in Scheme 2 that were used either in the
algebraic model defined by Eqs. (38–57) or in a DynaFit numerical model defined by
Eqs. (6–8) and the appropriate stoichiometric matrix.

k1 0.1 μM−1 s−1 k2 10 s−1

k3 0.1 μM−1 s−1 k4 1000 s−1

k5 0.1 μM−1 s−1 k6 1 s−1

k7 0.1 μM−1 s−1 k8 100 s−1

k9 0.1 μM−1 s−1 k10 0.1 a s−1

k11 1000 s−1 k12 10 s−1

k13 1 μM−1 s−1 k14 0.01 s−1

k15 1 μM−1 s−1 k16 0.1 s−1

k17 1 μM−1 s−1 k18 0.1 s−1

a Thermodynamic cycle: k10=k2k6k7k9/k1k5k8; see text.

Scheme 3.
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proliferates. For example, if we explicitly included the reversible step
EI + AWEAI, then two additional cycles would originate, the first
being E–EI–EAI–EA–E, and the second (larger) cycle being E–EI–EAI–
EA–EAB–EB–E.

The reaction mechanism in Scheme 2 was treated in two different
ways. First, using the King–Altman method [1,13], we derived the
algebraic steady-state rate equation, Eqs. (38–57), and used it to
simulate initial reaction rates. (The King–Altman derivation was
performed automatically by computer, using an online tool freely
available at www.biokin.com/king-altman.)

v = N =D ð38Þ

N = n1cAc
2
B + n2c

2
AcB + n3cAcB ð39Þ

D = d1c
2
BcI + d2cAcBcI + d3cAc

2
B + d4c

2
AcI + d5c

2
AcB + d6c

3
A

+ d7cBcI + d8c
2
B + d9cAcI + d10cAcB + d11c

2
A + d12cI

+ d13cB + d14cA + d15

ð40Þ

n1 = k4k5k7k9k11k12k14k16k18 ð41Þ

n2 = k1k4k5k9k11k12k14k16k18 ð42Þ

n3 = k1k5k8 + k2k7k9ð Þk4k11k12k14k16k18 ð43Þ

d1 = k4k5k7k12k14k16k17 k10 + k11ð Þ ð44Þ

d2 = ðk5k9k11k13k16k18þk16k7k9k14k15k18þk1k5k10k14k16k17Þk12k4ð45Þ

d3 = k4k5k7k9k14k16k18 k11 + k12ð Þ ð46Þ

d4 = k1k4k9k12k14k15k18 k6 + k11ð Þ ð47Þ

d5 = k3k6k7k12 + k1k4k5 k11 + k12ð Þ½ �k9k14k16k18 ð48Þ

d6 = k1k3k9k12k14k16k18 k6 + k11ð Þ ð49Þ

d7 = k4k5k8k12k13k16k18 k10 + k11ð Þ
+ k2k4k7k12k14k16k17 k6 + k10 + k11ð Þ ð50Þ

d8 = k4k5k7k12k14k16k18 k10 + k11ð Þ ð51Þ
d9 = k2k4k9k12k13k16k18 k6 + k11ð Þ

+ k1k4k8k12k14k15k18 k6 + k10 + k11ð Þ ð52Þ

d10 = ðk5k9k11k12 + k6k7k9k12 + k1k5k8k12 + k2k7k9k12
+ k1k5k10k12 + k1k5k8k11 + k2k7k9k11Þk4k14k16k18

d11 = k4k9 k6 + k11ð Þ + k3k8 k6 + k10 + k11ð Þ½ �k1k12k14k16k18 ð53Þ

d12 = k6 + k10 + k11ð Þk2k4k8k12k13k16k18 ð54Þ

d13 = k5k8 k10 + k11ð Þ + k2k7 k6 + k10 + k11ð Þ½ �k4k12k14k16k18 ð55Þ

d14 = k2k9 k6 + k11ð Þ + k1k8 k6 + k10 + k11ð Þ½ �k4k12k14k16k18 ð56Þ

d15 = k6 + k10 + k11ð Þk2k4k8k12k14k16k18 ð57Þ

We then compared the numerical results with the output from our
newly proposed general algorithm. To make the two methods
sufficiently comparable, and to satisfy the more stringent require-
ments of the algebraic method, we chose a particular value fort he
enzyme concentration that is 106 times lower than the concentrations
of substrates, and of the inhibitor. The simulated initial rates are
shown in Fig. 1. Regardless of which mathematical model was used
(algebraic or numerical), the results were identical within eight
significant digits.

These results empirically demonstrate the validity of the general
numerical model defined by Eqs. (6) and (8). However, the general
numerical method is extensible to “tight binding” inhibition [2]
without any restrictions on the stoichiometry of enzyme–inhibitor
complexes, whereas the classic algebraic method can only be applied
to weakly bound inhibitors.

Most importantly, the algebraic model defined by Eqs. (38–57) is
very complex. Entering these algebraic equations into a conventional
data-fitting programwould be a tedious and error prone procedure. In
contrast, the same kinetic model would be defined in the DynaFit
software by entering a few easily understandable biochemical
equations, which are listed under Scheme 2.

3.2. Experimental study: inhibition of p56lck tyrosine kinase

Faltynek et al. [14] reported that the quinolone heterocycle
WIN61651 is a mixed-type noncompetitive (with respect to peptide
substrates) inhibitor of the p56lck tyrosine kinase. Fig. 2 shows the raw

Fig. 1. Simulated inhibition of cAMP-dependent kinase inhibition by a bisustrate
inhibitor, according to the mechanism shown in Scheme 2. All rate constants are given
in Table 1. Initial rates were simulated either by using the algebraic Eqs. (38)–(57) or by
using the numerical approach, Eqs. (6) and (8). The results were exactly identical.

Fig. 2. Inhibition of p56lck kinase by WIN61651-Peptide binding site. Raw experimental
data were extracted from a previously published report [14]. The kinase was
preincubated at various concentrations of the peptide substrate RRSRC, either in the
absence of inhibitor (top curve) or in the presence of 20, 40, 60, 80 μM WIN61651
(curves from top to bottom). The reaction was started by the addition of 600 μM [γ32-P]
ATP. Incorporation of 32PO4 into RRSRC (cpm, counts per minute) was measured as
described elsewhere [15]. The raw data were fit either to the noncompetitive algebraic
model represented by Eq. (58) (thin dashed curves), or to a more complex steady-state
model represented by Scheme 4 (thick solid curves).
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experimental data from a kinetic study, in which the ATP concentra-
tion was held constant and the substrate (RRSRC) was varied. The
authors used the algebraic Eq. (58) to perform the least-squares fit of
the experimental data. The best least-squares fit to the algebraic
model is shown as thin dashed curves in Fig. 2. The published best-fit
values of inhibition constants were Kis=(18.3±4.3) μM (binding of
inhibitor to the free enzyme) and Kii=(67.0±17.9) μM (binding of
inhibitor to the kinase-ATP complex).

v = Vmax
cs

cs 1 + cI = Kiið Þ + Km 1 + cI = Kisð Þ ð58Þ

The dashed “best-fit” model curves in Fig. 2, which correspond to
the algebraic model for noncompetitive inhibition (Eq. (58)) clearly
do not describe the experimental data sufficiently well. Note that at
very high substrate concentrations, the observed enzymatic activity
is decreasing (substrate inhibition), which is not captured by the
fitting model. We have recently reported [16] that ignoring
substrate inhibition can lead to erroneous conclusions regarding
the inhibition mechanism. Specifically, a particular inhibitor
appeared “competitive” when substrate inhibition was ignored.
However, once substrate inhibition was properly taken into account,
it became clear that the inhibition mechanism is mixed-type
noncompetitive.

A kinetic model that better describes the published p56lck

inhibition data is shown in Scheme 4. The originally published
kinetic model [14] contained four adjustable model parameters,
namely, Vmax, Km, Kis, and Kii in Eq. (58). These kinetic constants
correspond to the microscopic rate constants kcat, kdb, kdi, and kdbi,
respectively, in Scheme 4. However, in Scheme 4 we have
introduced an additional adjustable parameter, the dissociation
rate constant kdbb. This corresponds to the ternary complex EB2, in
which the peptide substrate is bound not only in the active site, but
also in an allosteric site. The bimolecular association rate constant k
was assumed to be identical for all steps in the postulated
mechanism.

The substrate-inhibition mechanism in Scheme 4 was repre-
sented in DynaFit as shown in the Appendix. The best-fit values of
microscopic rate constants characterizing the inhibition steps were
kdi=(28±2)s−1 and kdbi=(2.6±11)s−1. The corresponding equi-
librium dissociation constants are kis=kdi/k=28 μM and kii=kdbi/
k=2.6 μM. These results are consistent with the possibility that the
binding of WIN61651 to the free enzyme is very much weaker
when compared with the binding to the enzyme–peptide complex.
This is the opposite of what the original report [14] suggested
(Kis=18 μM, Kii=67 μM).

4. Discussion

The main purpose of the example problem given above,
discussing the inhibition of p56lck tyrosine kinase, was not to

suggest the “true” or “improved” mechanism inhibition in this
particular case—even though it is clear that the solid curves in Fig. 2
(generated from the newly proposed numerical model) fit the
experimental data very much better than what was seen in the
original report [14]. Rather, the main purpose of the example
problem was to illustrate a general method of kinetic analysis,
which could be used to determine a more plausible inhibition
mechanism without the use traditional closed-form algebraic rate
equations.

Instead of a single algebraic equation for steady-state initial rates,
here we rely on a complete system of simultaneous nonlinear
algebraic equations, Eq. (6), which are solved numerically (iterative-
ly), by using the multidimensional Newton–Raphson method [8]. The
general form of these simultaneous nonlinear equations allows our
numerical formalism to be employed even when the concentration of
the enzyme is not negligibly small, when compared to the
concentrations of all substrates and modifiers (inhibitors and
activators). Thus, the numerical method is more generally applicable
than the conventional algebraic formalism for steady-state initial rate
kinetics [1].

The method proposed here is fully applicable to “tight binding”
enzyme inhibitors [2] without any restrictions being placed on the
stoichiometry of inhibitor binding, or on any other aspect of the
inhibition mechanism. Being able to properly analyze the kinetic of
“tight binding” inhibition has great practical value, because most
therapeutic enzyme inhibitors are “tight binding” under the
conditions of typical in vitro assays. Thus far, a fully general
treatment of initial reaction rates in enzyme assays involving “tight
binding” inhibitors had been possible under the relatively restric-
tive rapid-equilibrium approximation [3]. However, literature
reports (see, for example, ref. [6]) convincingly demonstrate that
ADP release could be rate-limiting and, therefore, the steady-state
approximation is more suitable than the rapid-equilibrium
approximation.

In the specific example of the p56lck kinase, we can only speculate
why the authors of the original report [14] chose to ignore the obvious
mismatch between the experimental data (symbols in Fig. 2) and the
“best-fit” algebraic model (dashed curves). Perhaps the authors were
somewhat discouraged by the prospect of having to derive appropri-
ate algebraic rate equations. Experience shows that many practicing
enzymologists find the exercise of algebraic derivations very daunt-
ing, and a mathematically minded specialist might not always be a
member of the team. What is worse, if the kinase inhibitor is “tight
binding” [2], an algebraic model might not even exist as a matter of
principle.

The method proposed in this paper allows the computer to
automatically construct the appropriate mathematical model for
enzymatic initial rates, under the steady-state approximation, arising
from an arbitrary reaction mechanism. The investigator needs to
provide only the symbolic definition of the reactionmechanism, in the
usual language of stoichiometric equations. For example, to introduce
the “substrate inhibition” step in the case of p56lck tyrosine kinase,
one can enter the text E.B+B b==N E.B.B to represent the (non-
productive) binding of a second substratemolecule to the catalytically
active enzyme–substrate complex. The DynaFit software “under-
stands” this notation, and updates the underlying mathematical
model accordingly.

It is legitimate to ask why it is still useful to keep the steady-
state approximation during numerical calculations, instead of the
simulation of the full set of differential equations, without any
limitations at all. A practical usefulness of the steady-state
approach stems from the fact that, in the completely general
approach, the investigator would be compelled to arbitrarily select
some particular point in time at which the “initial rate” should be
computed (as the first derivative of the observable physical
quantity with respect to time). Selecting this “initial” point in

Scheme 4.
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time is not simple, because in the fully general approach (based on
numerical integration) the instantaneous reaction velocity is
changing essentially at all reaction times.

The generalized numerical method described in this paper
requires two important caveats. The first limitation has to do with
the steady-state approximation not necessarily being satisfied at
extremely low concentrations of reactants.

As was stated in the Theory, we assume that when the enzyme
and the substrates are mixed, the system relatively quickly passes
through a transient phase and, subsequently, reaches a bona fide
steady-state phase. The “initial” reaction rates computed by the
present algorithm pertain this putative steady-state phase. Howev-
er, if the substrate concentrations in an actual experiment were
extremely low (comparable in magnitude with the enzyme
concentration), a genuine steady state would never be reached.
Under these extreme circumstances, a significant proportion of the
substrates would be consumed before a “steady-state” composition
could be attained. This limitation of the present method does not
affect the analysis of practically available in vitro kinetic data. For
practical reasons, the substrate concentrations in initial-rate
experiments typically are very much higher than the concentrations
of the enzyme.

The second limitation of the present method lies in that the
investigator must explicitly define any thermodynamic cycles,
which cause algebraic dependencies among microscopic rate
constants (e.g., k10=k2k6k7k9/k1k5k8 in Scheme 2). This logistical
chore is also present in the traditional algebraic approach, where it
manifests in the form of the Haldane equations [1]. Future
implementations of the steady-state initial rate method in the
DynaFit software package will identify the presence of thermody-
namic cycles, if any are present, and suggest a complete list of
choices to express the algebraic dependencies.

With these caveats and warnings kept firmly in mind, it is
hoped that the convenience and the full generality of the symbolic
approach to steady-state kinetic modeling will be useful to
researchers active in protein kinase research.
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Appendix

The following DynaFit [4] script will fit the experimental data
shown in Table 2 to the inhibition mechanism shown in Scheme 4. All
units used are micromoles per liter and seconds. The bimolecular
association rate constant k was assumed identical for all steps
(k=1 μM−1 s−1). The dissociation rate constant for ATP (step EA-
B→EB+A) was fixed at kdab=140 s−1, approximately corresponding

to Km=140 μM experimentally determined for ATP [14]. All other
rate constants were optimized in the regression.

½task�
task ¼ fit
data ¼ rates
approx ¼ steady−state
model ¼ allosteric substrate inhibition

½reaction� j A þ B −−−N P
½enzyme� j E
½modifiers� j I
½responses� j difference ¼ 1000000
½concentrations� j E ¼ 0:001; A ¼ 600
½mechanism�
E þ B b¼¼¼N E:B : k kdb
E:B þ A b¼¼¼N E:B:A : k kda
E:B þ B b¼¼¼N E:B:B : k kdbb
E:B:A −−−N E þ P : kcat
E þ I b¼¼¼N E:I : k kdi
E:B þ I b¼¼¼N E:B:I : k kdbi

½constants�
k ¼ 1; kda ¼ 140; kcat ¼ 1 ?
kdb ¼ 1000 ?; kdbb ¼ 1000 ?
kdi ¼ 10 ?; kdbi ¼ 10 ?

½data�
directory :=p56lck=data
extension txt
variable B

file i00 j concentration I ¼ 0
file i10 j concentration I ¼ 10
file i20 j concentration I ¼ 20
file i40 j concentration I ¼ 40
file i60 j concentration I ¼ 60
file i80 j concentration I ¼ 80
½output�
directory :=p56lck=output

½end�
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Table 2
Numerical data for the inhibition of p56lck tyrosine kinase by a quinolone inhibitor
extracted by image-digitization from ref. [14].

[B], mM [I], μM

0 10 20 40 60 80

0.3125 24 15 10 7 6 4
0.625 45 32 23 15 12 10
1.25 71 56 44 31 23 21
2.5 97 78 62 45 38 31
5 93 77 66 51 43 35
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