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When two or more tight-binding inhibitors are pres-
ent in an enzyme assay, the equation that relates the
initial velocity v to the concentration of reactants can-
not be written in an algebraically explicit form. Rather,
for n inhibitors it is an implicit polynomial equation of
degree n + 1 with respect to v. The complexity of the
polynomial coefficients dramatically increases with
each added inhibitor. Solving the transcendental rate
equation by traditional methods of numerical mathe-
matics has proven tedious because of the sensitivity of
these methods to initial estimates and because of the
existence of multiple roots. However, the equation can
be rearranged into a convenient recursive form, one in
which the velocity appears on both sides and the solu-
tion is found iteratively. The algebraic form of the re-
cursive rate equation is remarkably simple and differs
from the rate equation for classical rather than tight-
binding inhibition only by an added term. The numeri-
cal stability and the speed of convergence were tested
on the case of two competitive inhibitors. Initial esti-
mates of velocity that spanned 12 orders of magnitude
converged within five iterations. The velocities com-
puted with the recursive method for a single tight-bind-
ing inhibitor were identical with the values predicted
by the Morrison equation. The method is used to ana-
lyze experimental data for the inhibition of rat liver
dihydrofolate reductase by mixtures of the anticancer
drug methotrexate and its metabolic precursor form,
methotrexate-a-aspartate (a prodrug). © 1992 Academic

Press, Inc.

It is often desirable to analyze the kinetic behavior of
substances that are either suspected or known to be
mixtures of several tight-binding enzyme inhibitors. For
example, in order to optimize the synthetic effort in the
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design of an inhibitory drug, a racemic rather than opti-
cally pure compound may be used in preliminary
screening. In other circumstances, a metabolic conver-
sion of a prodrug—a tight-binding inhibitor itself—to
its superactive form may be studied. While the kinetic
theory for a single tight-binding inhibitor has been well
established, most notably in the works of Morrison (1),
Henderson (2), and Cha (3), an extension to the area of
multiple inhibitors poses some fundamental challenges.
In this paper we propose a nontraditional algebraic
form of the catalytic rate equation, one in which the
velocity appears on both sides, as in Eq. [1]. We show
that this form of the rate equation represents a conve-
nient tool for the formal analysis of multiple tight-bind-
ing inhibition.

i+lv = f(iva [S]01 [E]O’ [11]09 [12]0’ L ] [In]O’

Km’kcat’Kil’Kizs '“’Kin) [1]
For an arbitrary set of total analytic concentrations, in-
dicated in Eq. [1] by square brackets with lower index
zero, and for the corresponding kinetic constants, the
reaction velocity is calculated recursively. An ith esti-
mate v is effectively treated as one of the independent
variables and is used to calculate the (i + 1)th estimate
i*1y as an improved value; that value is in turn consid-
ered as a starting point in the next round of the calcula-
tion. The recursion is terminated when the difference
between two successive values of the reaction velocity
decreases below a predetermined convergence criterium
(e.g., 0.1% relative change). The most important ad-
vantage of using the recursive form of the rate equation
is that it retains remarkable algebraic simplicity for an
arbitrary number of inhibitors present in the mixture
and for arbitrary kinetic mechanism of inhibition (com-
petitive, uncompetitive, mixed-type). The recursive
formula is computationally very stable. In contrast, the
traditional analysis of n tight-binding inhibitors yields a
rate equation which contains an (n + 1)th degree poly-
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nomial with respect to velocity. Consequently the only
case that can be treated analytically is represented by
the single tight-binding inhibitor, which gives rise to a
quadratic equation. Higher polynomial equations can
only be solved numerically, but the solution is sensitive
to the choice of initial estimates and the convergence is
often poor.

THE RECURSIVE RATE EQUATION

In the absence of inhibitors, the enzymatic rate law
that predicts the dependence of reaction velocity on the
concentration of the enzyme, the substrate, and the
products can be written in the form of Eq. [2]. Given a
particular kinetic mechanism, the numerator N and the
denominator D in Eq. [2] can be derived by using any of
the three currently established methods: the net-rate
constant method of Cleland (4), the intuitive graphic
method of King and Altman (5), or most recently the
elegant method of Chou (6). In the presence of n inhibi-
tors, the reaction velocity follows Eq. [3], in which N is
the numerator in the distribution equation for jth inhibi-
torin the ith enzyme form whose total number is m, and
K;is the associated dissociation constant (for the termi-
nology used here see the papers of Cleland (7) and
Morrison (1)). Under practical conditions, when the
affinity of an inhibitor towards the enzyme is relatively
low, the uncomplexed form [ ;] is present in very large
excess compared to the enzyme bound forms. In this
case the concentration of the bound forms Z;[E;[;] in
the mass balance Eq. [4] can be neglected, [I;] in Eq. [6]
can be replaced with [I;],, and the derivation of the rate
equation for the “classical” inhibition is complete. In
the case of the tight-binding inhibition, however, the
affinity of the inhibitor toward the enzyme is so high
that there is a significant mole fraction of the inhibitor
bound in the enzyme-inhibitor complex.

v, = [E],N/D 2]
v=[EIN/(D+Z{L1ZN;/Ky) j=1,2,...,n [3]
(L] = Ulo — Z(E;L] 1=1,2,...,m (4]

Tight-binding inhibition of enzymes was first compre-
hensively analyzed by Morrison (1). In the original
treatment of a single tight-binding inhibitor (j = 1),
rate equations [3] and [5] were combined with the mass
balance equation [4] and the equilibrium equation [6].
In this manner the unknown concentrations of the free
enzyme [ E], the free inhibitor [I], and the enzyme-in-
hibitor complex [EI] were eliminated. The resulting
rate equation is quadratic with respect to velocity so
that it can be solved analytically to give Eq. [9] (see
below). Adopting a similar approach in the case of mul-
tiple inhibitors (j = 1, 2,. .., n), from [3] we obtain the
rate equation [7]. Further algebraic transformations

provide different results for different numbers of tight-
binding inhibitors. Thus, for one inhibitor the
rearranged formula [7] yields a second-degree polyno-
mial equation as indicated above (1). For two tight-
binding inhibitors a third-degree polynomial in velocity
is obtained, and so forth. The fundamental difference
between the case of a single inhibitor and multiple inhib-
itors lies in that quadratic equations have an analytic
solution, while higher order polynomial equations do
not. Therefore, an explicit version of the Morrison
equation for two or more inhibitors cannot be obtained.
Instead, these equations can only be solved by the appli-
cation of numerical analysis.

[E] =v/N (5]
(E;L) = [E] L] 2Z; N/ K; (6]
N
v = [E] (7]
D+ 3L, 2, N,/K;

1+ (v/N)Z,N,/K;

An obvious possibility to arrive at the numerical solu-
tion would be to rearrange [7] and to solve the resulting
polynomial by a standard method for equations of one
variable (e.g., the bisection method, the Newton-Raph-
son method, or the method regula falsi). This approach
has two significant disadvantages. First, there is the
problem of multiple roots. For example, in the case of
two inhibitors present in the mixture, the corresponding
cubic rate equation has three possible roots, and special
precautions need to be taken to avoid the unwanted
ones. Second, the algebraic complexity of the polyno-
mial coefficients dramatically increases with each addi-
tional tight-binding inhibitor and this problem is com-
pounded in numerical methods which use differential
terms (as does for example the Newton-Raphson
method). Moreover, in preliminary stages of this work
we found that the convergence properties of the New-
ton-Raphson algorithm in solving the polynomial equa-
tions vary greatly, depending on the number of inhibi-
tors, on the kinetic mechanism, and on the choice of the
initial estimates.

An alternative approach adopted here preserves the
form of the rate equation as indicated in [7], with the
initial velocity v appearing on both sides. This particu-
lar algebraic form represents a suitable recursive com-
putational formula. An initial estimate of v is used to
evaluate the expression on the right-hand side of [7],
and the new value is compared with the original one.
When the ith and the (i + 1)th values of velocity be-
come reasonably close, the calculation is terminated. An
important feature of these recursive calculations is their
numerical stability as measured by the speed of conver-
gence and by the sensitivity to the initial estimates. The
numerical stability of formula [ 7] was tested on a hypo-
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thetical unimolecular enzymatic reaction (uni-uni in
Cleland’s nomenclature (7)) inhibited by the presence
of two competitive tight-binding inhibitors. The con-
centration of the product at the beginning of the reac-
tion was assumed equal to zero, so that the numerator
and the denominator of the rate equation can be written
asN=k,[S],/K,,D=1+[S],/K,,,where k., and K,
are the turnover number and the Michaelis constant of
the substrate. The two inhibitors have inhibition con-
stants K;, and K;,, and for competitive inhibition both
N, and N, are equal to unity. Under these circum-
stances Eq. [7] has the form of [8]. It is noteworthy
that [8] bears remarkable similarity to the expression
for a mixture of two classical competitive inhibitors, the
only difference being in the additional term A in the
denominator that also contains the velocity.

v=[E],
cat[S]O/K
“TH [Slo/Kpn + [L1]16/(Kiy + A) + [L],/ (K

where A = vK,, /k.,.[S],-

ot A)’
[8]

The results of a series of test calculations are summa-
rized in Table 1. The proposed computational method
shows a remarkable speed of convergence, as well as
very little sensitivity to the initial estimates. Values of
the initial estimate °v, at the top of each column in Table
1, that span 12 orders of magnitude were found accept-
able. In contrast, solving the cubic equation obtained
from [8] by the Newton-Raphson method required
computation time that was four to five times higher de-
pending on the initial estimate (data not shown). The
Newton-Raphson method was also found much less ro-

TABLE 1

Calculation of the Initial Reaction Velocity for a Mixture of
Two Competitive Tight Binding Enzyme Inhibitors by Using
the Recursive Formula of Eq. [8]

Ky, = K; = 0.1 nMm
i° ipb i iy i ) i iy
0 1.000 0 108 0 1.000 0 107
1 8.699 1 9.091 1 6.234 1 6.061
2 8.726 2 7.104 2 6.873 2 6.857
3 8.726° 3 6.950 3 6.929 3 6.928
4 6.936 4 6.934 4 6.935
5 6.935 5 6.935
Note. Parameters: [S], = 100 uM, K,, = 10 uM, k., = 10572, [E], =

oM, [I], = 0.5 nM, [L,] = 0.5 nM, K;; = 1 nM.

¢ Iteration number.

b Velocity (nM/s).

¢ Correct value is 8.726 nM/s as calculated by using the Morrison’s
equation (Ref. (1)).

gret.
i

MTX 1,R= —OH
COOH
MTX-a-Asp 2,R= —HN~ " COOH
SCHEME 1

bust than the recursive method, and divergence in the
calculation often occurred.

APPLICATION TO DIHYDROFOLATE REDUCTASE

Methotrexate (N<-[4-[[(2,4-diamino-6-pteridinyl)
methyl] methylamino]benzoyl]-glutamic acid,
MTX,21) is one of the most important anticancer drugs
currently used in the clinical practice. It is a specific
inhibitor of dihydrofolate reductase, an enzyme that
plays a crucial role in the division of cancer cells. As part
of a study designed to investigate the metabolism of
methotrexate-a-aspartate (MTX-a-Asp, 2, Scheme 1),
a potential prodrug form of methotrexate, we wished to
follow the hydrolytic conversion of methotrexate-a-
aspartate to methotrexate in a culture of cancer cells by
using an enzyme kinetic assay. Aliquots of the mixture
of both inhibitors could be rapidly assayed for the de-
gree of metabolic conversion by using added dihydrofo-
late reductase, if a standard curve could be obtained
that interrelates the observed initial velocity and the
composition of the mixture. In an ideal case, the pro-
drug form would not at all inhibit the enzyme, and the
liberated drug would titrate the enzyme stoichiometri-
cally, having an infinitely small inhibition constant. In
this ideal case, at the initial prodrug concentration
equal to the enzyme concentration, the standard curve
would be represented by a straight line connecting 100%
velocity at 0% metabolic conversion and 0% velocity at
100% conversion, relative to a blank rate measured in
the absence of inhibitors. That is, the pure prodrug
would have no effect, at 50% metabolic conversion the
velocity would decrease by one-half, and exactly at the
total conversion to the active drug the enzyme would be
completely inhibited. In reality, however, the prodrug
may already produce nonnegligible inhibition of the en-

2 Abbreviations used: MTX, methotrexate; MTX-a-Asp, metho-
trexate-a-aspartate; DHF, dihydrofolic acid.
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zyme at a concentration where the completely liberated
drug still leaves a residual enzymatic activity. More-
over, there is no reason a priori to expect that the de-
crease in the observed residual velocity should be di-
rectly proportional to the metabolic conversion. And
what further complicates the metabolic model system is
that the concentration of the enzyme also influences the
geometry of dose-response curves (1). A rather labori-
ous approach to the design of the metabolic experiment
would rely on measuring the enzymatic velocities at var-
ied drug/prodrug ratios for several concentrations of
the enzyme and both inhibitors. From these experimen-
tal standard curves, one would select the total concen-
tration of inhibitors that provides optimum sensitivity
(“steepness”) in the expected metabolic range. The
method proposed here obviates the necessity to estab-
lish the standard curves experimentally. Instead, it al-
lows the construction of such curves from the inhibition
constants of pure components by using Eq. [8].

The kinetic mechanism for dihydrofolate reductase
involves two substrates and two products, a bi-bi mecha-
nism according to the nomenclature introduced by Cle-
land (7). However, when the enzyme is preequilibrated
with a large excess of NADPH as was the case in this
study, the kinetic mechanism effectively simplifies to
the uni-uni type. Both methotrexate and methotrexate-
a-aspartate were first examined separately in order to
determine their inhibition constants and the kinetic
mechanism. For both compounds, several series of as-
says were conducted at concentrations of both sub-
strates constant in each series (NADPH 150 uM; dihy-
drofolate between 10 and 100 pM) . The concentration of
inhibitors varied between zero and a maximum value
that produced approximately 90% inhibition. The ini-
tial reaction velocities were determined by linear re-
gression of time vs absorbance data within the first 50%
conversion of the substrate. This simple analysis was
permissible because the dihydrofolate concentrations
used (10 to 100 uM) were very much higher than the
corresponding Michaelis constant (0.11 uM, as deter-
mined by Jarabak and Bachur (8)) so that the enzyme
remained highly saturated, and thus the velocity re-
mained constant, up to rather high degrees of substrate
conversion. The statistical analysis of the initial veloci-
ties was performed by nonlinear least-squares fit (9) to
the corresponding theoretical model, the Morrison
equation [9]. Wang and Werkheiser (10) previously
determined that methotrexate is a purely competitive
inhibitor of dihydrofolate from rat liver. Therefore, in
the nonlinear least-squares fit of methotrexate data the
apparent inhibition constant K’ in Eq. [9] was assumed
equal to K; (1 + [S]o/K,,), where K; is the true inhibi-
tion constant (3). The optimal value of K; was 3.6 + 1.2
pM, in good agreement with the published value of 4.3
PM (8). On the other hand, the kinetic mechanism of
inhibition for MTX-a-Asp was not previously known.

T T T
Vrel
%
log (1],
FIG. 1. Inhibition of rat liver dihydrofolate reductase (4.0 mU/ml,

13.5 nM) by methotrexate (solid circles) and methotrexate-«-aspar-
tate (open circles) at pH 7.4. Both datasets were fitted to Eq. [9] by
using the Marquardt nonlinear least-squares method (9). Constant
parameters: [ S], 100 uM, K,, 0.11 uM, [ E], 13.5 nM. Optimized parame-
ters: Methotrexate K; 3.6 + 1.2 pM ( k., 15.3 + 0.5 s1) ; methotrexate-
a-aspartate K; 1.57 + 0.22 nM (k, 15.7 = 0.2 s7'). The dotted line
(Top) corresponds to a hypothetical irreversible inhibitor (K; = 0).
For explanation of the broken line at 18.8 nM see text.

Therefore we used a more general formula for the appar-
ent inhibition constant, one that corresponded to a
mixed-type (noncompetitive) inhibition mechanism;
the exact algebraic form for the mixed-type tight-bind-
ing inhibition constant can be found in the literature
(3). Both the competitive component and the uncom-
petitive component of the overall inhibition constant
were allowed to vary during the nonlinear least-squares
fit, but only the competitive component was sufficiently
defined by the experimental data (K, 1.57 + 0.22 nM).
Any arbitrary value of K;; higher than approximately 1
M was acceptable, but the associated error (11) was at
least 100%. From these results we conclude that MTX-
a-Asp is a purely competitive inhibitor of dihydrofolate
reductase from rat liver (pH 7.4).

b= kel Elo

+ V(E], — [Ilo — K))? + 4[E],K}) [9]

([Elo— Ul — K

Two representative sets of data obtained in the ki-
netic studies of the pure drug and the pure prodrug are
shown in Fig. 1. In order to accommodate large differ-
ences in the effective concentrations between the two
compounds, the data are shown in logarithmic coordi-
nates. The curves drawn through the two sets of data
points represent the best nonlinear least-squares fit to
Eq. [9]. The dotted curve corresponds to a hypothetical
inhibitor with infinitely small inhibition constant that
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FIG. 2. Inhibition of rat liver dihydrofolate reductase by mixtures

of methotrexate and methotrexate-a-aspartate. The curves were sim-
ulated by using Eq. [8] with the following parameters: [ S], 100 uM, K,
0.11 uM, ko, 155871, K;; 1.57 nM (MTX-a-Asp), K;, 3.6 pM (MTX),
the sum of [],], plus [1,], 0 nM (curve 1), 1.75 nM (curve 2), 3.5 nM
(curve 3), 7.0 nM (curve 4), and 14.0 nM (curve 5). Experimentally
determined velocities (7.0 nM total inhibitors) are indicated by solid
circles.

would stoichiometrically titrate the enzyme whose con-
centration is indicated by the arrow on the concentra-
tion axis. In fact, at pH 6.0 methotrexate behaves very
close to a stoichiometric titrant (8), and that property
was utilized in determining the active site concentra-
tion. At pH 7.4, however, methotrexate does not com-
pletely inhibit the enzyme at the point of molar equiva-
lence (13.5 nM). The broken line in Fig. 1 indicates that
at approximately 20 nM methotrexate there still re-
mains about 10% of enzymatic activity relative to the
blank measured in the absence of inhibitors. The same
line also indicates that an identical concentration of the
prodrug will already produce about 10% inhibition.
Thus, at 13.5 nM enzyme and at 20 nM total drug and
prodrug, we observe about 10% nonideality both at the
beginning and at the end of the hypothetical metabolic
experiment; the pure prodrug is already inhibitory at
the outset, and the fully liberated drug is not a stoichio-
metric titrant. In order to predict the inhibitory potency
of various binary mixtures of MTX and MTX-a-Asp
along the metabolic pathway, we need to use the recur-
sive rate equation [8].

The curves in Fig. 2 represent simulated velocities
obtained by evaluating the recursive rate equation [8]
at various total drug and prodrug concentrations (0 to
14 nM) and at a constant enzyme concentration (3.5

nM). These are the desired standard curves which,
arranged into a nomogram, could be used in the determi-
nation of the metabolic conversion degree from the ob-
served residual enzymatic velocity. With the exception
of curve 1 (1.75 nM total inhibitors), all calculated stan-
dard curves in Fig. 2 are markedly nonlinear. The shape
of these simulated curves can be used to design the ac-
tual metabolic experiment, given a particular expected
conversion degree. For example if the maximum ex-
pected conversion of the prodrug was 20%, the optimum
inhibitor concentration would be about 14 nM (curve 5
in Fig. 2) because it shows maximum steepness (sensi-
tivity) and covers the entire expected range. On the
other hand, this inhibitor concentration would not be
optimal if the expected maximum metabolic conversion
was 50% because in that region curve 5 in Fig. 2 is rather
flat (low sensitivity). In order to verify the predictions
of the theory, the inhibitory activity of various mixtures
of methotrexate and methotrexate-a-aspartate was
measured experimentally at a constant total concentra-
tion of both components (7 nM). The experimental re-
sults, as indicated by the solid circles in Fig. 2, are in
good agreement with the theoretical predictions (curve
4).In a study of methotrexate-a-aspartate metabolism,
the conversion degree can be in principle determined
from a single accurate measurement of the residual en-
zymatic activity by using a standard curve such as those
depicted in Fig. 2.

EXPERIMENTAL

Rat liver dihydrofolate reductase (EC 1.5.1.3.) was
obtained from Sigma Chemical Co. (St. Louis, MO) as a
solution in 50% glycerol containing 0.7 M ammonium
sulfate and 0.05 M potassium phosphate (pH 6.5).
Methotrexate-a-aspartate was a generous gift from Dr.
dJ. R. Piper (Southern Research Institute ). Methotrex-
ate was purchased from Sigma. Freshly reduced dihy-
drofolic acid (DHF') was prepared by using the method
of Blakley (12).

Active site titration with methotrexate (pH 6.0). In
determining the active site concentration of the enzyme
(typically about 10 nM total protein in each assay), we
used earlier reports of Jarabak and Bachur (8) that
methotrexate at pH 6.0 is effectively an irreversible
deactivator of rat liver dihydrofolate reductase. A stock
solution of the enzyme (10 mU/ml) and NADPH (1.50
mM ) was prepared in the assay buffer (100 mM sodium
phosphate containing sodium chloride to give osmolal-
ity 290 mmol /kg, pH 6.0). The enzyme /NADPH solu-
tion (0.10 ml, final concentrations 1 mU/ml enzyme,
150 um NADPH) was added to a spectrophotometric
cuvette containing a varied amount of methotrexate
(final concentration between 0 and 20 nM) dissolved in
the assay buffer (0.88 ml). The solution was mixed, and
after 10 min of preincubation at 37°C, the reaction was
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started by the addition of 1 mM dihydrofolic acid (0.02
ml) in the buffer (final concentration 20 uM). Absor-
bance data were collected over 10 min by using a com-
puter-interfaced spectrophotometer Cary-14 and com-
merical data-acquisition software (OLIS, On Line
Instrument Systems Inc., Jefferson, GA). Reaction ve-
locities were obtained by linear least-squares regression
of an initial segment of each progress curve at less than
50% conversion. No deviations from linearity were ob-
served within the indicated range (a typical correlation
coefficient r?2 was 0.99). The background air oxidation
rates, obtained under identical conditions except for the
absence of the enzyme, were subtracted from the rate
data prior to further statistical analysis. The active site
concentration was determined by nonlinear least-
squares optimization of [E], and k., in Eq. [9] by using
the Marquardt algorithm (9); the fixed parameters
were the Michaelis constant for dihydrofolate (K, 0.11
uM, Ref. (8)) and the arbitrarily chosen inhibition con-
stant (K; 0.3 pM). The error of optimized parameters
was estimated from the final curvature matrix by using
standard methods (11). Inhibition constants in the
range 0.05 to 0.5 pM satisfactorily described the almost
stoichiometric inactivation of the enzyme. The results
of the active site titration for different batches of the rat
liver dihydrofolate reductase over a period of 1 year var-
ied within 3.25 + 0.13 and 3.45 + 0.11 nM per mU/ ml.

Determination of inhibition constants (pH 7.4 ) and
assays of inhibitor mixtures. The enzyme was assayed
at pH 7.4 as described above in the presence of varied
amounts of MTX (final concentration 0-30 nM) or
MTX-a-Asp (final concentration 0-1 pM) in the prein-
cubation mixture. Inhibition constants were obtained
by nonlinear least-squares fit of the initial rate data to
equation [9] by using the Marquardt algorithm (9).
The varied parameters were K; (MTX 3.6 £ 1.2 pM,
MTX-a-Asp 1.57 + 0.22 nM) and k,, (15.5 £ 0.5 s~ ! for
both inhibitors); the errors of optimized parameters
were estimated from the final curvature matrix (11).
The constant parameters were [S ], 100 uM, K, 0.11 uM,
and [E], 13.5 nM. In a model discrimination analysis,
MTX-a-Asp was also assayed at varied substrate con-
centrations (10-100 uM) and the data were fitted to the
rate equation for mixed-type tight binding as described
above. Mixtures of MTX and MTX-a-Asp (total 7.0
nM) were assayed under identical conditions at 3.5 nM
enzyme.

CONCLUSION

The recursiver rate equation [7] can be conveniently
used to analyze inhibitory activity of mixtures of tight-
binding enzyme inhibitors. For an arbitrary number of

inhibitors, the equation retains a remarkably simple al-
gebraic form, resembling the usual expression for clas-
sical rather than tight-binding inhibition. Further ap-
plications in the area of biochemical pharmacology and
analysis may include the accurate theoretical descrip-
tion of a three-inhibitor system (e.g., of the type
prodrug - drug — metabolite), the detection of tight-
binding impurities present in inhibitors of therapeuti-
cally important enzymes, or the determination of inhibi-
tion constants for an unknown component of a binary
mixture, when the inhibition constant for the known
component was established independently. Biochemists
interested in applying the above method to their own
particular system simply need to incorporate the recur-
sive rate equation into their favorite computer program
for statistical analysis of experimental data, one that is
most likely based on the nonlinear least-squares model
estimation. A potential difficulty with this step is that
most available software packages only allow explicit
rate equations in which the velocity is entirely extracted
on the left-hand side but does not appear on the right-
hand side as in the case of recursive equations. Some
degree of redesigning most of these computer programs
will be necessary. Alternatively, interested readers can
obtain information about the availability of a complete
enzyme kinetic software package from the author.
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