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Fixed-point methods for computing the equilibrium composition of complex
biochemical mixtures
Petr KUZMICC
BioKin Consulting, P.O. Box 8336, Madison, WI 53708, U.S.A.

The fixed-point algebraic method [Storer and Cornish-Bowden

(1976) Biochem. J. 159, 1–5] for computing the concentrations

at equilibrium of complex biochemical mixtures fails for many

binding stoichiometries, especially those that include molecular

self-association. A typical example is the monomer–dimer–

tetramer equilibrium. This paper reports two main results. First,

INTRODUCTION

Storer and Cornish-Bowden [1] proposed a method (further

referred to as the SCB algorithm) for computing the composition

at equilibrium of complex biochemical mixtures. An initial guess

of equilibrium concentrations is refined in a succession of

repeated steps, each of which takes as input the result of the

previous step. The authors claim that the method is suitable for

any number of components that can associate ‘with any stoi-

chiometry’.

In fact, the algorithm fails for many stoichiometries, especially

those that involve higher-order molecular complexes. At certain

total concentrations, and at certain values of association con-

stants, the computation enters an infinite loop (see example

below). The SCB algorithm has been incorporated into a

purportedly general method for the analysis of kinetic data [2,3].

Our research was undertaken when the latter method failed on

the complex equilibria involved in the inhibition of HIV pro-

teinase.

This report contains two main results. First, the SCB algorithm

is analysed theoretically to predict for which biochemical reaction

mechanisms it can succeed in principle. The theoretical analysis is

based on the mean-value theorem of differential calculus. Sec-

ondly, an alternative method is described for those mechanisms

or stoichiometries where the algorithm fails, for example, the

monomer–dimer–tetramer problem or the inhibition of dis-

sociating enzymes.

PRINCIPLES

In this section the SCB algorithm [1] is cast is theoretical terms,

explaining its failure or success for particular binding stoichio-

metries.

Fixed-point algebraic methods

A fixed-point method for solving algebraic equations is defined

in the following way. A given equation f(x)¯ 0 is rearranged

algebraically into the form x¯ g(x). The two equations have an

identical solution s at which the function g has the same value as

its argument (hence ‘fixed-point ’). Starting from an initial

estimate of the solution, x
!
, presumably an improved estimate is

computed according to the formula x
"
¯ g(x

!
),x

#
¯ g(x

"
),…,

x
m+"

¯ g(x
m
). The recursion is ended when x

m+"
and x

m
become

sufficiently close for some m values.

the above algorithm is analysed theoretically to predict for which

binding stoichiometries it succeeds and for which it will fail.

Secondly, an alternative algorithm is described for self-associ-

ating biochemical systems. Illustrative examples are based on the

dimeric proteinase from HIV.

Dimensionality

The SCB algorithm in its original form [1] is an example of a

multidimensional fixed-point algebraic method. Convergence

properties of such ad hoc methods cannot be investigated.

Therefore, in this paper we restrict our attention to those

biochemical equilibria that can be reduced to a single algebraic

equation, representing the mass-balance law for a single mol-

ecular species. Many important biochemical binding mechanisms

involving several component species can be reduced to this

simpler case (see Example 3 below).

Divergence and oscillations

The convergence of any given fixed-point formula is not guaran-

teed. In fact, x
m+"

is closer to the correct solution s in comparison

with x
m

if and only if the derivative dg}dx evaluated at x
m

is

smaller than unity in its absolute value. The proof is given in the

Appendix. When rdg}dxr evaluated at the solution is greater than

unity, the fixed-point formula will not converge. If rdg}dxr! 1 at

x
!
(convergence) but rdg}dxr" 1 at the solution (divergence), the

algorithm must pass a point where rdg}dxr evaluated at x
m

is

exactly equal to unity. At that point the algorithm enters

undamped oscillations, thus producing an infinite series of

alternating concentrations neither of which represent the con-

ditions at equilibrium.

Forced convergence

When a biochemical mechanism involves molecular complexes

containing several identical subunits of a given component, the

convergence of the fixed-point can be enforced by rearranging

the mass-balance equations x¯ g(x) into the form x¯ h(x)¯
[x­g(x)]}2. Now the absolute value of first derivative rdh}dxr is

smaller than unity near equilibrium. Overall, convergence can be

enforced by using mass-balance equations of for type x¯ h(x)¯
[(n®1)x­g(x)]}n, where x is the concentration of the component

molecular species at equilibrium and n& 2.

IMPLEMENTATION

All computations reported in this paper were performed by

using the program SigmaPlot (Jandel Scientific) for scientific

graphics and data analysis. For example, the composition of a

monomer–dimer–tetramer mixture according to the fixed-

point formula (13) was computed by using the following
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SigmaPlot script : ‘ total¯ 2±0 rk1¯ 1±0 rk2¯ 1±0 r iterations¯
100 rCELL(1,1)¯ total rFOR i¯ 2 TO iterations DO r
CELL(1,i)¯0±5*CELL(1,i®1) * ²1­total}[CELL(1,i®1)­2*

k1 *CELL(1,i®1)#­4 *k1 *k2 *CELL(1,i®1)%]´ rEND FOR’.

The vertical bar stands for a line break. Key words from the

SigmaPlot transform language are shown in uppercase. The

above script puts into the first 100 cells of theworksheet successive

estimates of the equilibrium concentrations c
M
. Similar scripts

were created by using the Excel spreadsheet program (Microsoft

Corporation).

EXAMPLES

This section describes three example problems of increasing

complexity. All three examples are based on the proteinase from

HIV, which exists as a monomer, dimer or tetramer [4].

Substrate–analogue inhibitors bind to the catalytically active

dimer [4]. In the text below, the total or analytical concentration

of the molecular species X is denoted by the ‘ tilde ’ accent (c4
x
) ;

the concentration at equilibrium is denoted by the ‘circumflex’

accent (cW
x
).

Example 1 : monomer–dimer equilibrium

The monomer–dimer equilibrium can be solved directly, thus in

principle an iterativemethod is not needed.However, the problem

is useful for explaining the theory of convergence for fixed-point

algebraic methods. According to the SCB method [1], the mass

balance equation (1) for the monomer–dimer equilibrium

2MY
K

M
#

is rearranged into the form (2). The derivative is

shown in eqn. (3). A solution is found iteratively as is shown in

eqn. (4). In this simple special case, the concentration at equi-

librium can also be obtained analytically [eqn. (5)].
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Anyfixed-point algebraic method is convergent if the derivative

is smaller than unity near the correct solution cW
M

(see the

Appendix). This condition holds at all total concentrations of the

monomer M, as can be seen from eqn. (6). Indeed, the right-hand

side is always smaller than unity because 2}o(8Kch
M
­1) must

be greater than zero.) dg

dc
M

)
cM=c#M

¯ ch
M

2K

(1­2KcW
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M

2K

[1­o(8Kc
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[1­2}o(8Kch
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The above inequality proves that the SCB method will always

converge for the monomer–dimer problem. It can even be

predicted how many iterations will be taken, because the rate of

convergence is measured by the absolute magnitude of rdg}dcr
evaluated near the solution. Values of rdg}dcr approaching unity

mean slow convergence. Thus, if the total concentration ch
M

is

very much larger than the equilibrium constant, the product K

ch
M

tends to infinity, 2}o(8Kch
M
­1) tends to zero, and conse-

quently rdg}dcr approaches unity. Under these circumstances the

SCB iterative method is predicted to be slow.

For example, at the total concentrations of the monomer equal

to ch
M

¯ 1}K, 10}K, 100}K, 1000}K, the derivative evaluated at

equilibrium is rdg}dcr¯ 0±3600, 0±6694, 0±8724, 0±9567 respect-

ively. The latter value means that the SCB algorithm will gain

one significant digit in accuracy in approx. 52 iterations, because

0±9567&#E 0±1. Thus if the concentrations at equilibrium were

required with six-digit accuracy, more than 300 iterations would

be needed. This prediction has been verified empirically (results

not shown).

Example 2 : momoner–dimer–tetramer equilibrium

It is shown below that the monomer–dimer–tetramer equilibrium

cannot be solved by the SCB method [1]. The reason is explained

theoretically, and an alternative method is proposed. The mass-

balance equation (7) for the monomer–dimer–tetramer equi-

librium 4MY
K
"

2DY
K
#

T is rearranged into the form (8). The
derivative is shown in eqn. (9). According to the SCB method [1],

it is desired to find the solution iteratively as is shown in eqn.

(10).
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The key question is whether the derivative is greater or smaller

than unity when evaluated at the correct solution cW
M
. Although

the analytical solution of a polynomial equation up to fourth

degree always exists (Galois theorem), the analytical solution of

the quartic equation (7) is quite complicated. Therefore we shall

employ a graphical method to investigate the convergence

properties of the fixed-point method.

The graphs in Figure 1 display the function g in the upper

panel, and its derivative dg}dc in the lower panel. It is assumed

that K
"
¯K

#
¯ 1 in arbitrary units. The total concentration of

the monomer is ch
M

¯ 1 (Figure 1A) or ch
M

¯ 2 (Figure 1B) in the

same units.

By definition of the fixed-point method, the concentration of

the monomer M at equilibrium is where the plot of function g

intersects with a straight line with unit slope and zero intercept.

Thus, at the total concentration ch
M

¯ 1, the equilibrium con-

centration is approximately cW
M

¯ 0±45. The lower panel of Figure

1(A) shows that the derivative evaluated at this concentration is

smaller than unity, rdg}dcr¯ 0±87. Therefore the SCB algorithm

should converge, but not very rapidly. It can be predicted that

the algorithm needs approx. 48 iterations to converge within

three significant digits (0±87%)¯ 0±001).
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Figure 1 Convergence properties of the SCB algorithm [1] for the

monomer–dimer–tetramer equilibrium 4MY
K1

2DY
K2

T

(A) total concentration ch M ¯ 1 in arbitrary units ; (B) total concentration ch M ¯ 2. The

equilibrium constants are K1 ¯ K2 ¯ 1. Upper panel, plot of function g defined by eqn. (8) ;

lower panel, plot of the derivative rdg/dc r defined by eqn. (9).

On the other hand, at the total concentration ch
M

¯ 2, the

equilibrium concentration is approximately cW
M

¯ 0±63 (see the

upper panel of Figure 1B). At this concentration the derivative is

greater than unity, rdg}dcr¯ 1±27 (see the lower panel of Figure

1B). Therefore, according to the convergence theorem proved in

the Appendix, the SCB method cannot converge. However, the

derivative is smaller than unity in the first step, where c
M

is

estimated as ch
M
. Therefore, the very first iteration should be in

the correct direction, toward lower values of c
M
. Combining these

two facts (the derivative is smaller than one in the first step, but

larger than one near the solution), it can be predicted that the

SCB algorithm must pass a point where rdg}dcr¯ 1. The value of

rdg}dcr exactly equal to unity represents neither convergence nor

divergence, but instead infinite oscillations between two incorrect

values.

Figure 2 compares the above predictions with facts. At ch
M

¯
1 the SCB algorithm converged in approx. 50 iterations, while at

ch
M

¯ 2 the algorithm fell into infinite oscillations after initially

taking several convergent steps. Clearly, the SCB method [1] and

methods derived from it [2,3] cannot be used to calculate the

composition at equilibrium for self-associating biochemical

systems.

The failure of the SCB method is remedied in the following

way. Any fixed-point formula x¯ g(x) can be modified by

adding x to both sides and subsequently dividing both sides by

two, which gives x¯ h(x)¯ [x­g(x)]}2. For the monomer–

dimer–tetramer mixture, we obtain eqn. (11) and the corre-

sponding derivative (12).
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Figure 2 Sequence of iterations in the SCB algorithm [1] applied to the

monomer–dimer–tetramer equilibrium 4MY
K1

2DY
K2

T

The iteration formula is defined by eqn. (10). (A) Total concentration ch M ¯ 1 in arbitrary units ;

(B) total concentration ch M ¯ 2. The equilibrium constants are K1 ¯ K2 ¯ 1.
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When h and rdh}dcr are plotted at different total concentrations

of the monomer, the derivative rdh}dcr is always smaller than

unity when evaluated at the equilibrium concentration cW
M
. For

example at ch
M

¯ 2, the derivative at equilibrium (cW
M

¯ 0±63) is

rdh}dcr¯ 0±13 (see the lower panel in Figure 3A). Therefore near

the solution the fixed-point equation (13) should gain approxi-

mately three significant digits in accuracy within three iterations

(0±13$! 0±001). This prediction is confirmed in Figure 3(B).

Example 3 : inhibition of dissociative enzymes

Inhibition of the HIV protease involves two component mol-

ecular species (the enzyme monomer M and the inhibitor I). It is

cast here as a single-component problem, for which successful

convergence can be mathematically guaranteed. The reaction

mechanism consists of two steps, namely the monomer–dimer

equilibrium 2MY
K
"

M
#

and the binding of an inhibitor to the

enzyme dimer, M
#
­IY

K
#

M
#
I. According to the SCB method, the

mass-balance equations (14) and (15) are rearranged as is shown

in (16) and (17).
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Figure 3 Convergence properties of a modified fixed-point algorithm
[eqns. (11)–(13)] applied to the monomer–dimer–tetramer equilibrium

4MY
K1

2DY
K2

T (A) and sequence of iterations defined by eqn. (13) (B)

(A) Upper panel, plot of function h defined by eqn. (11) ; lower panel, plot of the

derivative rdh/dcr defined by eqn. (12). (B) Total concentration ch M ¯ 2, equilibrium constants

K1 ¯ K2 ¯ 1 (compare with Figure 2B).

Convergence of any fixed-point algebraic method can be

investigated only if it is cast as a single equation. Therefore the

inhibitor mass balance was eliminated by substituting for c
I
from

eqn. (18) into the enzyme mass balance (14). Applying the

graphical technique described above for the monomer–

dimer–tetramer problem revealed that the resulting fixed-point

formula had poor convergence properties. At some concen-

trations of the inhibitor and the enzyme, the concentration at

equilibrium could not be computed because the algorithm

oscillated indefinitely between two incorrect concentrations

(results not shown). On the other hand, the recurrent formula

based on function h defined in eqn. (19) converged safely in all

tests.
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DISCUSSION

Often the biochemist is faced with the following question. Given

the total or analytical concentrations of several interacting

components, and given also the equilibrium constants for the

formation of all molecular complexes, what are the concen-

trations of components and complexes at equilibrium? Except

for the most simple equilibria, an answer can be obtained only by

using a computer. Starting from a suitable initial estimate of the

concentrations at equilibrium, the machine gradually refines the

answer until, after enough cycles, it is obtained with the desired

accuracy.

Sometimes the method of computation is designed so poorly

that the correct answer is never obtained. For example, a

succession of intermediate results can get progressively farther

from the correct solution (divergence) instead of closer to it

(convergence). In this paper we have encountered another kind

of pathological computation: the machine produced an alter-

nating series of two different and incorrect answers. These

oscillations were observed when the SCB algorithm [1] was

applied to the monomer–dimer–tetramer equilibrium, or to the

inhibition of dissociative enzymes.

Despite failures for certain stoichiometries, the family of fixed-

point algebraic methods [1,5] is attractively simple. Composition

of complex biochemical mixtures at equilibrium can be computed

even by using the most simple programmable calculator, or a

desktop computer with a conventional spreadsheet program.

Simple recurrent formulae have been used successfully to analyse

mixtures of tightly bound inhibitors [6], or multiple equilibria

arising in receptor–ligand displacement assays [7]. Therefore it

was decided to subject the fixed-point algebraic methods to

theoretical scrutiny, explain the occasional failures and, if

possible, rectify them.

Theoretical analysis of the fixed-point method, based on the

mean-value theorem of differential calculus (see the Appendix),

can be undertaken in principle only for a function of one

variable. Nothing can be said about the convergence of ad hoc

multidimensional methods. Therefore the equilibrium problem

should be cast as a single mass-balance equation whenever

possible. In Example 3 above it has been shown that mixtures

containing several components can be analysed in this way. For

multidimensional equilibrium problems, which cannot be cast in

terms of a single-component species, the present method in

principle cannot offer any advantage.

The success or failure of a fixed-point formula x¯ g(x) to

solve iteratively the original algebraic equation f(x)¯ 0 (here a

mass-balance equation) depends on the absolute magnitude of

the derivative rdg(x)}dxr near the correct solution. Unfortunately

the original Storer and Cornish-Bowden method [1] often leads

to derivatives greater than unity, especially when certain mol-

ecular complexes contain more than one subunit of the same

component. In such cases, most typically for the simple

monomer–dimer–tetramer equilibrium, oscillations may occur.

The failure is remedied by transforming the equation x¯ g(x)

into the equivalent form x¯ h(x)¯ [x­g(x)]}2. The derivative

rdh(x)}dxr then becomes smaller than unity at the correct solution,

so that the modified fixed-point method converges even for the

monomer–dimer–tetramer equilibrium or for the inhibition of

dissociating enzymes.

Thus, every iterative formula x¯ g(x) proposed for the

computation of multiple simultaneous biochemical equilibria

should be scrutinized as follows. Evaluate the derivative dg(x)}dx

over the entire range of possible solutions, namely, with x

spanning the interval between zero and the total or analytical

concentration. If it appears that the derivative is greater than one

in absolute magnitude over a significant portion of this interval,

rearrange the fixed-point formula into a different form. The goal

is to decrease the derivative below one over the widest possible

domain of x.

In summary, fixed-point iterative methods for the computation

of multiple biochemical equilibria are useful if they are applied

discriminately. Trying to build around any particular fixed-point

method a general-purpose system for the analysis of biochemical

data [8] is ill-advised. A truly universal equilibrium algorithm

must be employed for that purpose [9]. In addition, it must be

kept in mind that the safer variant of the fixed-point method

described here, preventing oscillations, might require more

iterations in those special cases where oscillations are not a

threat.
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Fixed-point methods, far from being universally applicable to

‘any stoichiometry’, can be applied only to particular problems

such as simultaneous acidobasic equilibria [5], complex mixtures

of ATP and metal ions [1], or oligomerization equilibria examined

here. By using a diagnostic method described in this paper, the

convergence properties of a fixed-point algorithm can be investi-

gated to see if it is applicable to the given type of simultaneous

biochemical equilibria.

I thank Lorna M. Banks-Aaronson for useful discussions and continuing support.

APPENDIX
Theorem 1 : mean-value theorem

Let f(x) be continuous and have continuous first derivatives in

the internal (x,x­δx). Then f(x­δx)®f(x)¯ δxrdf}dxr
x=x#

, the

partial derivative being evaluated at a suitable point xW within the

interval (x,x­δx).

Theorem 2 : convergence of a fixed-point method

Let s be a solution of the equation x¯ g(x), and suppose that the

function g has continuous first derivatives dg}dx everywhere in

some interval J containing s. Then if the first derivatives satisfy

rdg(x)}dxr%α! 1 everywhere in J, the iteration process de-

fined by x
n+"

¯ g(x
n
) converges for any x

!
from the interval J.

Proof

By the mean-value theorem of differential calculus there is an xW
between x and s such that g(x)®g(s)¯dg}dxr

x# `(s,x)
(x®s) for all
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