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Abstract

We propose that the time course of an enzyme reaction following the Michaelis-Menten reaction mechanism can be conveniently
described by a newly derived algebraic equation, which includes the Lambert Omega function. Following Northrop’s ideas [Anal.
Biochem. 321, 457-461, 1983], the integrated rate equation contains the Michaelis constant (KM) and the specificity number
(kS ≡ kcat/KM) as adjustable parameters, but not the turnover number kcat. A modification of the usual global-fit approach involves a
combinatorial treatment of nominal substrate concentrations being treated as fixed or alternately optimized model parameters. The
newly proposed method is compared with the standard approach based on the “initial linear region” of the reaction progress curves,
followed by nonlinear fit of initial rates to the hyperbolic Michaelis-Menten equation. A representative set of three chelation-
enhanced fluorescence EGFR kinase substrates is used for experimental illustration. In one case, both data analysis methods (linear
and nonlinear) produced identical results. However, in another test case, the standard method incorrectly reported a finite (50-70
µM) KM value, whereas the more rigorous global nonlinear fit shows that the KM is immeasurably high.
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1. Introduction

Since the publication of Michaelis and Menten’s seminal
paper [1], numerous methods have emerged in analytical bio-
chemistry for the determination of the Michaelis constant KM,
the turnover number kcat, and the specificity number kS ≡ kcat/KM,
which taken together represent the most basic biochemical prop-
erties of enzyme substrates. For example, undergraduate level
textbooks [2, p. 206] [3, p. 65] even to this day usually suggest
determining the Michaelis constant from the linearized Lineweaver-
Burk plot of transformed experimental data.

More specialized texts typically recommend determining
the Michaelis constant by nonlinear fit of initial reaction rates
to the Michaelis-Menten equation [4]. It is frequently assumed
that the reaction progress curves contain an “initial linear re-
gion” [5], which presumably justifies the linear fit of data points
contained in that region, as long as substrate conversion is kept
below 10%. However, Cornish-Bowden [6, p. 87] has strongly
challenged that assertion and claims instead that no more than
1% conversion is tolerable in order to define “true” initial rates.
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Cornish-Bowden’s persuasive argument is that although many
enzymatic reaction progress curves might appear linear, an im-
perceptible nonlinearity, which is literally invisible to the hu-
man eye, might strongly influence the ultimate results of the
data analysis.

To address complications resulting from the nonlinearity
problem, various authors have devised a range of data-analytic
strategies. For example, Baici [7, pp. 55-56] recommends di-
viding the reaction progress curve into numerous short, approx-
imately linear segments; computing the slope of each linear por-
tion; and finally extrapolating the changing slopes to zero time.

Another distinctly different group of strategies is based on
constructing a nonlinear model for the entire reaction progress
curve; fitting this model to all the available data, not just to the
presumed “initial linear” region; and finally extracting the sub-
strate kinetic parameters from the results of the global fit with-
out regard to the initial reaction rates. However, as an option,
mathematical properties of each best-fit nonlinear model curve
can be utilized to compute the first-derivative with respect to
time, at time zero, as the initial reaction rate. The new data-
analytic approach presented in this report falls into this latter
category.

To arrive at the current method, we combined several ideas
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already existing in the biochemical literature. The foundation
has been laid by Schnell and Mendoza’s [8] discovery of a
closed-form algebraic formula that can be used to represent the
time course of an enzyme reaction conforming to the Michaelis-
Menten mechanism. An important advantage of this algebraic
solution is that it allows a significantly higher speed of com-
putation, when compared either to the Newton-Raphson itera-
tive scheme [9, 10] or to numerical integration of ODE systems
[11].

Secondly, we took advantage of Northrop’s realization [12]
that ‘V/K’ (closely related to the specificity number kcat/KM)
can, and probably should, be profitably treated as a primary
biochemical parameter rather than a “derived” ratio. The advan-
tage of Northrop’s approach is that in many unfavorable cases,
when neither KM nor kcat are well defined by the available data
(see below for an illustrative example), the specificity number
kS is never-the-less very well defined.

Another element of the approach newly proposed here is the
global analysis method advocated by Beechem [13]. Reported
here is the first instance of a closed-form algebraic solution of
the integrated Michaelis-Menten rate law, based on Lambert’s
Omega function, applied in the global analysis context. How-
ever, we propose an improvement over the usual approach in
that some, but very importantly not all, nominal substrate con-
centrations are treated as adjustable model parameters rather
than as fixed constants.

A comparison of our newly proposed nonlinear global fit
method with the standard approach, based on the simplifying
assumption of linearity in the reaction progress, is made possi-
ble by utilizing three chelation-enhanced fluorescence (CHEF)
[14–17] substrates of the EGFR kinase. We show that in some
cases the simplified standard method leads to results that are
essentially identical to those offered by the rigorous nonlin-
ear global fit. However, in other cases the simplified standard
method completely fails, without any meaningful diagnostics,
such as for example the correlation coefficients, R2; the distri-
bution of residuals; or confidence intervals for model parame-
ters, that could be otherwise used by the data analyst to uncover
the failure of the standard method.

2. Methods

2.1. Experimental

2.1.1. Materials
The EGFR protein kinase domain, amino acids 668-1210,

was purchased from BPS Bioscience (Cat. No. 40187, Lot
No. 120321-GC). Chelation-enhanced fluorescence substrates
Sub006, Sub009 and Sub013, containing the unnatural fluoro-
genic amino-acid Sox [14–17], were synthesized by standard
solid-phase peptide synthesis methods and either purified by
preparative reverse-phase HPLC (Sub006, Sub013) or desalted
(Sub009), followed by rigorous analysis and quality control.

Sox-based substrates used in this study were experimental
sequences selected to illustrate relevant data-analytic and math-
ematical procedures. Each of these substrates are now avail-
able from AssayQuant Technologies Inc. (Marlborough, Mas-

sachusetts). Sub006 (Cat. No. AQT0008) sequence is Ac-
EEEEYF-C(Sx)-LV-NH2. Sub009 (Cat. No. AQT0097) se-
quence is Ac-EEPEYI-C(Sx)-FG-NH2. AQT0008 and AQT0097
are covered under US provisional patent application 62/331,903.
Sub013 (Cat. No. AQT0001) sequence is Ac-EEEEYI-C(Sx)-
IV-NH2, which has also been published as Omnia Y12, for-
merly available from Thermo Fisher Scientific.

2.1.2. Assay conditions
The EGFR kinase was assayed at the concentration of either

5 nM or 8 nM, depending on the substrate present at concentra-
tions up to 50 µM, using a 1:2 dilution series. The assay buffer
contained 50 mM HEPES pH 7.5, 1 mM ATP, 1 mM DTT, 0.01%
Brij-35, 5% glycerol, 0.5 mM EGTA, 10 mM MgCl2, and 250
µM MnCl2. Fluorescence changes were monitored at 30◦C for
90 or 120 minutes, depending on the substrate.

2.2. Theoretical

2.2.1. Model equation for data fitting
Here we propose that the time course of an enzyme reaction

following the Michaelis-Menten kinetic mechanism [18, p. 19]
can be conveniently described by a newly derived Eqns (1)–(2),
where Fα is some appropriate experimental variable, such as
for example fluorescence, recorded at the reaction time t; F0 is
the experimental signal observed at t = 0 (i.e., baseline offset –
essentially a property of the instrument); [S]0 is the initial sub-
strate concentration; KM is the Michaelis constant; and rP is the
specific molar response coefficient of the reaction product. The
auxiliary variable α represents the value of the Lambert omega
function, also referred to as Lambert W function [8, 19, 20].
In Eqn (2), [E]0 is the concentration of the enzyme active sites;
t is the reaction time; and kS is the specificity number defined
as kcat/KM. Note that kS has the dimension of a second-order
(bimolecular association) rate constant. We chose the particular
symbol kS to represent the specificity number on the basis of a
recommendation from the International Union of Biochemistry
[21, 22], which recommends the notation kA, kB for enzyme
reactions involving substrates “A” and “B”, respectively. Eqn
(3) represents the instantaneous observed reaction rate, i.e., the
first derivative with respect to time t of the physical variable F
being monitored.

Fα = F0 + rP ([S]0 − KM α) (1)

α = ω

[
[S]0

KM
exp

(
[S]0

KM
− kS [E]0 t

)]
(2)

dFα

dt
= rP kS KM [E]0

α

1 + α
(3)

An alternate, algebraically equivalent, way of expressing
the integrated rate law is given by Eqns (4)–(5). In this case
the equation system does not contain KM as a model parameter,
but rather kcat (and kS). The alternate use of Eqn (1) or Eqn
(4) depends on which of KM or kcat is of greater interest to the
investigator.
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Fβ = F0 + rP

(
[S]0 − kcat

kS
β

)
(4)

β = ω

[
[S]0

kS

kcat
exp

(
[S]0

kS

kcat
− kS [E]0 t

)]
(5)

The derivation of Eqns (1)–(2) is shown in Appendix A. The
derivation of the instantaneous rate equation Eqn (3) is shown
in Appendix B.

2.2.2. Global data fitting procedure
In the preliminary stages of developing our data-analytic

method, we observed that in some particular cases the least-
squares solution depended strongly on whether or not the nom-
inal substrate concentrations were treated as fixed constants or,
alternately, as adjustable model parameters. We also observed
that it is not feasible to allow all substrate concentrations, with-
out exception, to be treated as fitting parameters, because in
that case the regression model becomes redundant with respect
to several nonlinear parameters, such as for example the molar
responses coefficient of the product.

To address this difficulty, we developed a heuristic multi-
step data fitting procedure, as follows. We perform three sep-
arate rounds of global [13] nonlinear least squares fit. In each
round, we treat one of the substrate concentration as a fixed pa-
rameter, while all remaining substrate concentrations are treated
as adjustable parameters. More specifically, the three highest
substrate concentrations are in turn treated as fixed constants.
We subsequently compute the geometric mean and geometric
standard deviation of the three separate sets of best-fit values of
KM and kS.

All nonlinear regression analyses were performed by us-
ing the software package DynaFit [11] implementing the trust-
region adaptive algorithm [23–25] (NL2SOL ver. 2.3).

2.2.3. The “standard” method
The conventional or standard method of determining sub-

strate kinetic parameters consists of two separate steps. In step
one, one must identify an “initial portion” of each reaction progress
curve, and perform a linear fit of time vs. experimental signal
values to determine the “initial rate” of the reaction. Here the
fitting model is Eqn (6), where F is again the experimental sig-
nal observed at time t; F0 is the baseline offset parameter; and v
is the observed reaction rate in appropriate units (for example,
relative fluorescence units per minute or per second). In step
two, the initial rates are usually analyzed by a nonlinear fit to
the Michaelis-Menten Eqn (7).

F = F0 + v t (6)

v = Vmax
[S]0

[S]0 + KM
(7)

For the purpose of verifying our results, obtained with the
newly derived mathematical model, we also deployed the con-
ventional method, as described above, with one variation. In

particular, in a trial-and-error fashion, we defined the “initial
linear” region of each progress curve by taking into account a
different number of data points, starting from nD = 4 (tmax = 9
min) up to nD = 10 (tmax = 30 min).

3. Results

3.1. Example 1: Substrate Sub013
The EGFR kinase was assayed with substrate Sub013 at

five different concentrations spanning from 3.125 µM to 50 µM,
stepping by a factor of two. The resulting five reaction progress
curves were combined into a single global [13] data set and
subject to nonlinear regression analysis using Eqn (1) as the
fitting model. The results are graphically shown in Figure 1
and numerically in Table 1. The instantaneous observed rate
plot is shown in Figure 2.
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Figure 1: Global fit of kinetic data for substrate Sub013. Sym-
bols represent fluorescence readings at the given reaction time.
Smooth curves represent least-squares model curves generated
by global fit of the combined kinetic traces to Eqn (1). Figure
legend shows substrate concentrations in µM units. For more
details see text.

In the particular instance illustrated in Figure 1 and Table 1,
the nominal substrate concentration [S](5)

0 = 50 µM was treated
as a fixed model parameter, whereas the remaining four con-
centrations were treated as adjustable parameters. Note that the
best-fit values of [S](1)

0 – [S](4)
0 are approximately 20% higher

than the corresponding nominal concentrations.
Similar results were obtained when [S](4)

0 = 25 µM or [S](3)
0 =

12.5 µM were treated in turn as fixed parameters, while the
four remaining substrate concentrations were optimized. In

3



EGFR :: Sub013

3.13
6.25
12.5
25.0
50.0

0 2000 4000 6000 8000

0
5

10
15

t, sec

d(
∆F

, r
fu

) 
/ d

t

Figure 2: Instantaneous reaction rates corresponding to the
best-fit theoretical model curves displayed in Figure 1. Each
instantaneous rate curve was generated from Eqn (3), using the
best-fit values of model parameters. Note that the reaction rate
decreases rapidly immediately from the start.

each of the tree alternate regression analyses, we obtained three
sets of slightly different best-fit values of Km and rP, while the
specificity number kS showed virtually no variation. The fi-
nal results of this kinetic analysis were the geometric means
and geometric standard deviations, KM = (67.0 ± 7.4) µM and
kS = 0.039 µM−1s−1. The geometric mean and geometric stan-
dard deviation of the turnover number computed as kS × KM
was kcat = (2.6± 0.3) s−1. Exactly identical results for kcat were
obtained when Eqns (4)–(5) were applied to the particular ex-
perimental data set. The mean and standard deviation of the
difference response coefficient of the fluorescent product was
rP = (2250 ± 260) rfu/µM.

# Parameter Initial Final ± Std.Err. Cv,%

1 kS, µM−1s−1 1 0.0393 ± 0.001 2.5
2 Km, µM 100 78.3 ± 9.3 11.9
3 rP, rfu/µM 1000 1933 ± 36 1.9
4 [S](1)

0 , µM 3.13 4.10 ± 0.12 2.9
5 [S](2)

0 , µM 6.25 8.00 ± 0.19 2.4
6 [S](3)

0 , µM 12.50 15.99 ± 0.37 2.3
7 [S](4)

0 , µM 25.00 31.17 ± 0.68 2.2
[S](5)

0 , µM 50.00 fixed

Table 1: Results of global fit of kinetic data for substrate
Sub013. The best-fit values of the five optimized offsets on
the signal axis (F0) are omitted for brevity. For further details
see text.

3.2. Example 2: Substrate Sub006
The global fitting results for substrate Sub006 were very

similar to those shown in Section 3.1. This substrate is in-
cluded principally because it enabled an important comparison
between the results obtained by our newly proposed nonlinear
global method and the standard method (see below).

3.3. Example 3: Substrate Sub009
The EGFR kinase was assayed with substrate Sub009 at

six different concentrations spanning from 0.78 µM to 25 µM,
stepping by a factor of two. The resulting six reaction progress
curves were combined into a single data set and subject to non-
linear regression analysis using Eqn (1) as the fitting model.
The results are shown graphically in Figure 3 and numerically
in Table 2.
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Figure 3: Global fit of kinetic data for substrate Sub009. Sym-
bols represent fluorescence readings at the given reaction time.
Smooth curves represent least-squares model curves generated
by global fit of the combined kinetic traces to Eqn (1). Figure
legend shows substrate concentrations in µM units. For more
details see text.

Despite the fact that the data and model curves displayed
in Figure 3 (substrate Sub009) appear to show the same overall
shape as the progress curves in Figure 1 (substrate Sub013), the
best-fit values of adjustable model parameters listed in Table 2
illustrate a fundamental difference between the two substrates.

In particular, the Michaelis constant for Sub009 cannot be
determined because the best-fit value approached the upper limit
imposed by the parameter constraints. We can safely conclude
from this result that the true value of KM must be much higher
than the highest substrate concentration used in the experiment,
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# Parameter Initial Final ± Std.Err. Cv,%

1 kS, µM−1s−1 1 0.0196 ± 0.0012 6.1
2 Km, µM 100 > 10000 > 10000
3 rP, rfu/µM 1000 3260 ± 70 2.3
4 [S](1)

0 , µM 0.78 1.05 ± 0.05 4.4
5 [S](2)

0 , µM 1.56 2.21 ± 0.07 2.9
6 [S](3)

0 , µM 3.13 4.22 ± 0.10 2.3
7 [S](4)

0 , µM 6.25 8.13 ± 0.15 1.8
8 [S](5)

0 , µM 12.5 14.35 ± 0.16 1.1
[S](6)

0 , µM 25.0 fixed

Table 2: Results of global fit of kinetic data for substrate
Sub009. The best-fit values of the six optimized offsets on the
signal axis (F0) are omitted for brevity. For further details see
text.

in this case [S]0 = 25 µM. For the same reason, the upper limit
for kcat = kS × KM cannot be determined either. A systematic
confidence interval search using the profile-t method [26] (de-
tails not shown) provided the lower limit estimates KM = 190
µM and kcat = 4.3 s−1. In this example, the application of Eqns
(4)–(5) was unsuccessful in that it was not possible to deter-
mine kcat, for the same reason that Eqns (1)–(2) did not pro-
duce a best-fit value of KM. In fact, as a general rule, if KM is
undefined because the reaction progress curves are essentially
exponential, the kcat value is not defined either.

Most importantly, despite the fact that neither kcat nor KM
can be defined by the available data, even at an approximate
level, the specificity number kS ≡ kcat/KM is well defined, as
is evidenced by the relatively low value (corresponding to 6%
coefficient of variation) of the formal standard error 0.020 ±
0.001 µM−1s−1.

Repeating this analysis while treating either [S](5)
0 or [S](4)

0
as fixed parameters produced essentially identical results as are
those listed above in Table 2. The Michaelis constant and turnover
numbers were undefined, whereas the best-fit value of the speci-
ficity number kS was the same in all three cases.

3.4. Comparison with the standard method
The three EGFR kinase substrates discussed in this report

were selected as illustrative examples in particular because they
display substantially different behavior in the method compar-
ison study discussed in this section. The main difference be-
tween the three substrates relies on how the KM values deter-
mined by the standard method depend on the choice of tmax,
i.e., the length of the “initial” portion of the reaction progress
curves.

In one case (substrate Sub013), varying tmax between 9 and
30 minutes (stepping by 3 minutes to produce 8 distinct KM val-
ues) had virtually no effect on the best-fit values of the Michaelis
constant. For this particular substrate, all KM determinations re-
sulted in the best-fit values ranging from approximately 60 µM
to 65 µM. The best-fit value of KM for Sub013, as determined
by our newly proposed global nonlinear method, was (67 ± 7)
µM. Thus, in this case, not only the standard method results are

entirely insensitive to the choice of tmax between 9 and 30 min-
utes, but also the results are essentially indistinguishable from
those obtained by global nonlinear regression. These findings
are illustrated by the blue filled circles in Figure 4. The empir-
ical model curve passing through those data points is described
by the empirical equation KM = −0.0494 tmax + 64.1.

Figure 4: Comparison with the standard method for substrates
Sub006 and Sub013. The smaller size symbols (circles and
squares) represent the results obtained by the standard method
while varying the length of the “initial” portion between 9 and
30 minutes. The larger symbols located at tmax = 0 represent
the best-fit values obtained by nonlinear regression.

In the second case (substrate Sub006), varying tmax from
9 to 30 minutes caused a prominent increase in the apparent
KM value determined by the standard method. This is shown as
the smaller purple squares in Figure 4. Specifically, each addi-
tional time-point taken into the determination of initial rates (9,
12, 15, ... 30 min) ultimately increased the best-fit value of KM
by about 10 µM (from 60 µM to 140 µM). Importantly, when
the varying values of KM are extrapolated to (hypothetically)
“zero duration” of the initial section, the extrapolated value is
identical with the best-fit value determined by global nonlinear
regression (large square in Figure 4). The nonlinear extrapo-
lation curve shown in Figure 4 is described by the exponential
equation KM = 44.9 exp(0.0337 tmax). The KM measurement
at tmax = 9 min for substrate Sub006 appears to be an outlier
from the exponential trend. The explanation lies in that this
particular measurement, KM = 75 µM, was affected by large
uncertainty as measured by the nonsymmetrical confidence in-
terval determined by the profile-t method of Bates and Watts
[26, 27]. In particular, the lower and upper limits at the 95%
confidence level were 37 µM and 370 µM, respectively. Thus,
within the rather large uncertainty the seemingly outlying KM
value does fit the overall pattern.
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In the third and final scenario, varying tmax from 9 to 30
minutes caused a prominent decrease in the apparent KM value
determined by the standard method, as shown in Figure 5. Nom-
inally, the values of KM varied from approximately KM = 200
µM at tmax = 9 min to approximately KM = 70 µM at tmax = 30
min. The smooth curve in Figure 5 is described empirically by
the power function KM = 1210 t−0.854

max .

Figure 5: Comparison with the standard method for substrate
Sub009. The circles represent the results obtained by the stan-
dard method while varying the length of the “initial” portion
between 9 and 30 minutes. In this case, the best-fit value of KM
determined by global nonlinear regression tends to infinity and
therefore no value for it is shown.

In the case of Sub009, the largest discrepancy between the
results of the newly proposed nonlinear global method as com-
pared with the classic standard method is observed for tmax = 30
min, i.e., when the first ten time points (amounting to 30 min-
utes) were considered as the “initial linear” region of the re-
action progress curves. It is therefore valuable to examine the
tmax = 30 min results in greater detail, to see if we could iden-
tify why the standard method produced KM = (70 ± 14) µM,
whereas the global nonlinear method leads to the conclusion
that the KM for Sub009 is immeasurably high (thus, effectively
“infinite”).

The results of linear fit of individual reaction progress curves
(only the first 10 time points in each case) are summarized
graphically in Figure 6. The residual plots (bottom panel) show
only a barely perceptible deviation from the linear model, and
only for the progress curve obtained at [S]0 = 25 µM. All resid-
uals of fit span from approximately -100 to +100 relative fluo-
rescence units (RFUs). At the same time, the overall amplitude
of the experimental signal is 15 × 103 RFUs, which means that
the random noise level is acceptably low, amounting to approx-

imately 200/15000 = 1.3%.
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Figure 6: Linear fit of individual reaction progress curves for
substrate Sub009. The figure legend shows substrate concentra-
tions in µM units. The coefficient of determination, R2, ranges
from 0.993 at [S]0 = 0.78 µM to 0.999 at [S]0 = 25 µM. For
additional details see text.

The correlation coefficients, R2, for individual progress curves,
starting at the lowest concentration [S]0 = 0.78 µM and pro-
gressing toward [S]0 = 25 µM, are 0.993, 0.993, 0.998, 0.999,
0.999, and 0.999. Thus, there is no indication of non-linearity
based either on the visual examination of the residuals, or on
the numerical value of the R2. Based on either of these mea-
sures of potential nonlinearity, we are led to the conclusion that
all progress curves displayed in Figure 6 are “perfectly linear”,
within the first 30 minutes. However, we note that this conclu-
sion is in conflict with those that can be drawn by a simple vi-
sual examination of the full reaction progress (tmax = 120 min),
shown in Figure 3. The plots in Figure 3 are clearly nonlin-
ear, in their entirety, whereas the plots in Figure 6 appear lin-
ear. However, the reaction progress curves cannot be linear and
nonlinear at the same time. This important issue is addressed in
greater detail in the Discussion.

The “initial” reaction rates corresponding to the linear fits
shown in Figure 6 are displayed in Figure 7. The best-fit values
are listed in the figure legend. The non-symmetrical confidence
interval for the Michaelis constant, obtained by the profile-t
method of Bates & Watts [26, 27], spans from 44 µM to 140
µM at the 95% confidence level. Thus, there is no indication
that the KM would be undefined by the available experimental
data, in which case the upper limit of the non-symmetrical con-
fidence interval would tend to numerical infinity at 95% confi-
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dence level.
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Figure 7: Nonlinear fit of “initial” reaction rates obtained from
the linear fit of reaction progress curves shown in Figure 6 to the
Michaelis-Menten Eqn (7). The best-fit values of model param-
eters and associated formal standard errors are KM = (70 ± 14)
µM and Vmax = (28 ± 4) rfu/sec.

Not only is the 95% confidence interval for the KM (as deter-
mined by the standard method) closed from both ends, but also
the classic linearized re-plots of the “initial” reaction rates do
not indicate any departure from the expected Michaelis-Menten
kinetics. To verify this, we have constructed Lineweaver-Burk
plots, Eadie-Hofstee plot, and Hanes-Woolf plots of the exper-
imental data displayed in Figure 7. The Hanes-Woolf plot in
particular is shown in Figure 8. The Michaelis constant com-
puted from the slope and intercept of the replot is KM = 53 µM.
Recall that the newly proposed global nonlinear fit of the com-
plete progress curves suggests that the KM value is very much
higher, to the extent that the upper limit of the 95% confidence
level interval cannot be determined at all.

4. Discussion

In this paper we present for the first time a variant of a
previously known closed-form algebraic model [8], which al-
lows the fitting of enzymatic reaction progress curves to the
integrated Michaelis-Menten rate law expressed by using the
Lambert Omega function. The beneficial variation we intro-
duce is based on Northrop’s idea [12] that the specificity num-
ber kS ≡ kcat/KM should be considered as a “primary” kinetic
parameter, rather than a “derived” kinetic constant. Also for
the first time, we applied the integrated Michaelis-Menten rate

Figure 8: Hanes-Woolf replot of “initial” rate data for substrate
Sub009 displayed in Figure 7.

law in the context of global fit [13]. Goličnik [20] previously
utilized a similar kinetic model, also involving the Lambert
Omega function, for global kinetic analysis of combined ki-
netics for simulating surface plasmon resonance experiments.
However, this paper presents the first instance of performing
a global fit using an integrated form of the Michaelis-Menten
equation based on Lambert’s Omega function.

The data-analytic method presented in this paper offers at
least three major advantages. First, the method requires fewer
data points and experiments, compared to the standard method.
In fact, because there are only four adjustable model parameters
per progress curve (KM, kS, F0 and rP), a small multiple of that
particular number (typically at most 15-20 time-points) would
be sufficient to determine all substrate kinetic parameters if the
experimental data are of good quality. In favorable cases, it is
necessary to only utilize a single substrate concentration, pro-
vided that the concentration is moderately higher that the KM.
For example, Goudar et al. [19] have analyzed a series of en-
zymatic progress curves recorded at different initial substrate
concentrations, and obtained essentially identical KM values in
every case, based on the analysis of single individual curves.

The second major advantage is that this method provides
more information about the biochemical system, from the same
type of data that are normally used for initial rate studies. Specif-
ically, if the reaction progress curves are at least partially devel-
oped (i.e., if substrate conversion reaches approximately 50%)
it is possible to reliably estimate the molar response coefficient,
for example, the UV/Vis extinction coefficient. This is because
rP appears directly as one of the regression parameters. Further-
more, assuming that the enzyme active site concentration [E]0
can be trusted, and with the response coefficient in hand (“in-
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ternal scaling” of the data from instrument coordinates to con-
centrations) we can directly estimate either the turnover number
kcat or the specificity number kS.

Finally, the third major advantage is the relatively high speed
of numerical processing, certainly in comparison with either
certain ad-hoc algorithms based on the Newton-Raphson method
[10], or in comparison with the numerical integration of ODE
systems [11] arising in biochemical kinetics.

Regarding potential disadvantages and caveats, the present
method is only applicable if and when the underlying kinetic
mechanism strictly conforms to the simple Michaelis-Menten
model. This means that Eqns (1)–(2), or alternately Eqns (4)–
(5), are not applicable to continuous assays in which the en-
zyme undergoes partial denaturation, or in which the reaction
product acts as an inhibitor. However, Goličnik [20] developed
a variant of the mathematical model presented here, which al-
lows not only for product inhibition, but also for full reversibil-
ity. On the other hand, in the context of possible departures
from the simplest Michaelis-Menten kinetic model, Eqns (1)–
(2) and Eqns (4)–(5) offer a possible approach to easily de-
tecting such departures, because if a group of enzyme progress
curves shows a clear lack of fit, as manifested in the distribution
of residuals, then this provides positive evidence that the actual
molecular mechanism is more complex.

Another drawback is that, at the present time, only relatively
few commonly accessible software packages for data analysis
offer an implementation of the Lambert Omega function. Those
software packages include Mathematica, MATLAB, SAS, and
most recently DynaFit [28].

In the process of comparing our results with those obtained
by the standard method, which is based on linear fit of the “ini-
tial region” followed by the fit of the presumably “initial” reac-
tion rates, we uncovered instances where the standard method
failed without a discernible warning. For example, the stan-
dard method reported seemingly realistic values for substrate
Sub006 at every chosen length of the “initial” portion of the ki-
netic trace, and yet those results taken together showed a varia-
tion in the observed KM values by several fold, which is unac-
ceptable.

In the worst possible scenario, specifically in the case of
substrate Sub009, we observed seemingly sensible results, as
measured by multiple goodness-of-fit criteria. The coefficient
of determination (R2) values for the linear fit varied from 0.992
to 0.999 for all “initial” portions of the progress curves. The
residual plots appeared nearly ideally random. The formal stan-
dard errors of KM and Vmax were relatively small. The nonsym-
metrical confidence intervals were closed from both sides (up-
per and lower limit). The best-fit value of the Michaelis con-
stant appeared realistic. The Hanes-Woolf replot of the linearly
transformed data was linear and produced a realistic value of
KM.

And yet, the same time, the global nonlinear regression
method revealed that the “best-fit” value of KM produced by the
standard method was invalid in the case of substrate Sub009.
The reason for this failure has been eloquently explained by
Cornish-Bowden [29, p. 40-41]. In particular, Cornish-Bowden
pointed out that what may appear as a “linear” initial portion

of the progress curve is in fact not strictly linear. This author
recommended that only “if it is possible to arrange the assay so
that less than 1% of the complete reaction is followed, it may be
true that the progress curve is indistinguishable from a straight
line.” This is in contrast with frequently repeated rule of thumb
referring to 10% (as opposed to merely 1%) conversion [30].

It is noteworthy that another instance of nonlinearity in CHEF
reaction progress curves was previously reported to cause se-
vere distortions of the overall results in the analysis of covalent
inhibition [31]. In that particular case, similar to Example 3
reported here, the reaction progress curves appeared linear to
the naked eye, but a rigorous mathematical analysis revealed
that the relevant progress curves were actually nonlinear. As
a consequence of ignoring the imperceptible nonlinearity, the
inhibition constants were distorted by one order of magnitude
[31].

In conclusion, the standard data analysis method based on
linear fit of the “initial” portion reaction progress curves can
be used reliably only if no variation in best-fit values of KM
and kcat is seen in response to altering the tmax value. If, in
fact, KM and kcat do depend on tmax, then the optimal choice
for the data analyst is to utilize a nonlinear global analysis fit
of complete progress curves, such as the one presented in this
report, or alternately the Newton-Raphson iterative method of
Duggleby [10].

At the present time, the relevant mathematical model (not
only the Lambert Omega function but in fact Eqns (1)–(2)) is
directly encoded in the software package DynaFit [28] (see Ap-
pendix C). A requisite technical note, input script files for the
software, as well as illustrative data files, can be downloaded
from the Technical Notes section of www.biokin.com.

The universality of the current method has been demon-
strated by application to other systems beyond EGFR. Expand-
ing this work is not practical for space reasons. However, step-
by-step technical notes available online [32–34] demonstrate
the use of the present method not only on EGFR [32], but also
on proteases [33] and other enzymatic systems [34].

An anonymous reviewer requested that we present a "com-
pelling justification" for the use of this new analysis method.
The reviewer asked: "How bad is the initial velocity approach?"
The answer to this question depends on the context. Let us con-
sider that the KM for substrate Sub006 is distorted by a factor of
two to four when determined by the initial velocity approach, as
shown in Figure 4. In the biological context, a two-fold or even
four-fold distortion of the true KM value can probably be ne-
glected. Many practicing biologists would agree that as long as
substrate kinetic constants are correct within an order of mag-
nitude, the estimates are “good enough” for understanding the
enzyme’s biological properties.

However, the situation changes dramatically in the bioan-
alytical context. For example, one of us (P.K.) served as con-
sultant on a project involving the commercial release of a pro-
tease enzyme for therapeutic purposes [35–37]. In this case, a
government regulatory agency demanded exquisitely high pre-
cision and accuracy in the determination of substrate kinetic
constants before approving the injectable enzyme preparation
for human use. A two-fold variation in the KM would be con-
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sidered unacceptable for the manufactured batch release assay.
In any given context, both scientists and managers must con-
sider an appropriate degree of formal rigor and choose the most
appropriate biochemical analysis method.

The raw experimental data utilized in this report as well as
all DynaFit [11, 28] input script files are available for download
as a supplementary material [32]. The DynaFit software pack-
age is available free of charge to all academic researchers from
http://www.biokin.com.
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[20] M. Goličnik, On the Lambert W function and its utility
in biochemical kinetics, Biochem. Eng. J. 63 (2012) 116–
123.

[21] A. Cornish-Bowden, Current IUBMB recommendations
on enzyme nomenclature and kinetics, Perspectives in
Science 1 (2014) 74–87.

[22] Nomenclature Committee of the International Union of
Biochemistry, Symbolism and terminology in enzyme ki-
netics, Biochem. J. 213 (1983) 561–571.

[23] J. E. Dennis, D. M. Gay, R. E. Welsch, Algorithm 573:
NL2SOL, ACM Trans. Math. Software 7 (1981) 369–383.

[24] J. E. Dennis, D. M. Gay, R. E. Welsch, An adaptive non-
linear least-squares algorithm, ACM Trans. Math. Soft-
ware (1981) 348–368.

[25] J. E. Dennis, R. B. Schnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations,
Prentice-Hall, Upper Saddle River, NJ, 1983.

9

http://www.biokin.com
www.assayquant.com
www.biokin.com


[26] D. G. Watts, Parameter estimation from nonlinear models,
Methods Enzymol. 240 (1994) 24–36.

[27] D. M. Bates, D. G. Watts, Nonlinear Regression Analysis
and its Applications, Wiley, New York, 1988.
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Appendix

A. Derivation of Eqn (1)

The instantaneous rate (i.e., reaction rate at the arbitrary
time t) of an enzyme reaction following the Michaelis-Menten
kinetic mechanism is given by Eqn (8), where [S] is the concen-
tration of substrate at an arbitrary time t. This differential equa-
tion can be integrated analytically by the method of separation
of variables, which yields Eqn (9), where [S]0 is substrate con-
centration at the initial time t = 0. Note that it is algebraically
impossible to further rearrange Eqn (9) so as to extract [S] on
the left-hand side unless we resort to the Lambert ω function,
as described below.

d[S]
dt

= −kcat [E]0
[S]

[S] + KM
(8)

0 = [S] − [S]0 + KM ln
[S]
[S]0

+ kcat [E]0 t (9)

In its general form, the Lambert ω function is the inverse of
the function f (x) = x ex, in the sense that x = ω (x ex). Thus,
even though it is possible to rearrange Eqn (9) so as to isolate
[S] on the left-hand side, perhaps it is possible to rearrange Eqn
(9) so as to extract [S] exp([S]). Indeed, if we can somehow
corral [S] exp([S]) on the left-hand side of a rearranged Eqn (9),
we could then “take the ω” of both sides. In so doing, we could
directly obtain algebraic formula for the substrate concentration
at time t, because by definition [S] = ω

(
[S] e[S]

)
. This task is

accomplished in a series of algebraic manipulations delineated
below.

ln
[S]
[S]0

=
[S]0 − [S] − kcat [E]0 t

KM

[S] = [S]0 exp
(

[S]0 − [S] − kcat [E]0 t
KM

)

[S] exp
(

[S]
KM

)
= [S]0 exp

(
[S]0 − kcat [E]0 t

KM

)

ω

[
[S]
KM

exp
(

[S]
KM

) ]
=

[S]
KM

= ω

[
[S]0

KM
exp

(
[S]0 − kcat [E]0 t

KM

)]

[S] = KM ω

[
[S]0

KM
exp

(
[S]0 − kcat [E]0 t

KM

)]

For an enzyme reaction following the overall scheme S →
P, the product concentration at time t is by definition equal to
[P] = [S]0 − [S]. Thus, we obtain Eqn (10), in which kcat/KM ≡
kS is the specificity number.

[P] = [S]0 − KM ω

[
[S]0

KM
exp

(
[S]0

KM
− kcat

KM
[E]0 t

)]
(10)

Finally, the experimental signal F is related to the product
concentration [P] as F = F0 +rP[P], which leads directly to Eqn
(1).
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B. Derivation of Eqn (3)

The derivative of [S] with respect to time is given by

d[S]
dt

=
d
dt

{
KM ω

[
[S]0

KM
exp

(
[S]0 − kcat [E]0 t

KM

)]}

= KM
d
dt

{
ω

[
[S]0

KM
exp

(
[S]0 − kcat [E]0 t

KM

)]}

= KM
d
dt

{
ω

[
g(t)

]}

g(t) ≡ [S]0

KM
exp

(
[S]0 − kcat [E]0 t

KM

)

According to the chain rule of differential calculus,

dω (g(t))
dt

=
dω
dg
· dg

dt

Thus,

dg
dt

= −[E]0
kcat

KM

[S]0

KM
exp

(
[S]0 − kcat [E]0 t

KM

)

= −[E]0
kcat

KM
g(t)

The rule for differentiating the Lambert Omega was pre-
sented by Golicnik [20, Eqn. (A3), p. 122]:

dω(g(t))
dg(t)

=
1

g(t)
ω(g(t))

1 + ω(g(t))

When the differentiation rule is applied in the present case,
we obtain:

dω (g(t))
dt

=
dω
dg
· dg

dt

= −1
g

ω

1 + ω
· [E]0

kcat

KM
g

= − kcat

KM
[E]0 · ω

1 + ω

d[S]
dt

= −kcat [E]0 · ω

1 + ω

The derivative of the experimental signal is given by F =

rP[P] = rP([S]0 − [S]). Therefore dF/dt = −rPd[S]/dt and,
finally,

dF
dt

= rP kcat [E]0
ω

1 + ω

= rP kcat [E]0
α

1 + α
.

C. DynaFit input script

The DynaFit [28] script listed below was used to perform
global nonlinear fit of combined progress curve data for sub-
strate Sub006. Note that the maximum substrate concentration
[S]0 = 25 µM was held fixed at its nominal value, whereas the
remaining substrate concentrations were treated as optimized
parameters. This is indicated by the presence of the question
mark following the given concentration value, for example So
= 3.13 ?. The BioKin Technical Note No. 2016/01 con-
tains electronic copies of all input data files (DynaFit scripts
and raw experimental data) that were used to produce this re-
port. Those materials are available for download from www.
biokin.com/TN/2016/01/.

[task]
task = fit
data = generic
code = built-in

[equation]
MichaelisMentenProgressKmKs

[parameters]
Eo = 0.008
rP = 1000 ?
kS = 1 ?
Km = 100 ?

[data]
variable t
directory ./proj/CHEF/EGFR/progress/data

graph EGFR :: Sub006
sheet DFit--EGFR--Sub006.csv
column 2

param Fo = 0 ? (-10000 .. 10000)
param So = 3.13 ? | label 3.13

column 3
param Fo = 0 ? (-10000 .. 10000)
param So = 6.25 ? | label 6.25

column 4
param Fo = 0 ? (-10000 .. 10000)
param So = 12.5 ? | label 12.5

column 5
param Fo = 0 ? (-10000 .. 10000)
param So = 25.0 | label 25.0

[output]
directory ./proj/CHEF/EGFR/progress/output

[settings]
{Filter}

ZeroBaselineSignal = y
{Output}

XAxisLabel = t, sec
YAxisLabel = {/Symbol D}F, rfu
WriteTeX = y

[end]
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