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Abstract

This report describes an integrated rate equation for the time-course of covalent enzyme
inhibition under the conditions where the substrate concentration is significantly lower
than the corresponding Michaelis constant, such as for example in the Omnia R© assays
of EGFR kinase. The newly described method is applicable to experimental conditions
where the enzyme concentration is significantly lower than the dissociation constant of
the initially formed reversible enzyme-inhibitor complex (no “tight binding”). A detailed
comparison with the traditionally used rate equation for covalent inhibition is presented.
The two methods produce approximately identical values of the first-order inactivation
rate constant (kinact). However, the inhibition constant (Ki) and therefore also the
second-order inactivation rate constant kinact/Ki, is underestimated by the traditional
method by up to an order of magnitude.
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1. INTRODUCTION

Covalent enzyme inhibition has both reversible and irreversible components. The
reversible component is analogous to the equilibrium constant for simple reversible in-
hibitors (Ki). In a subsequent step, characterized by the rate constant kinact, a covalent
bond is formed irreversibly. Characterizing these two contributions to covalent inhibitor
potency is essential to understand their biological impact as well as in the design of more
effective drugs.

In a recent report [1] we described a detailed kinetic analysis of covalent (irreversible)
inhibition of the EGFR kinase under the special experimental conditions where the pep-
tide substrate concentration, [S]0, is very much lower than the corresponding Michaelis
constant, KM,Pep. The mathematical model consisted of a system of simultaneous first-
order ordinary differential equations (ODE), which must be integrated numerically in
order to compute the reaction time course. Two important advantages of ODE models
in enzyme kinetics are that all conceivable molecular mechanisms can be treated and
that no simplifying assumptions are made regarding the experimental conditions. One
important disadvantage is that the iterative numerical integration of ODE systems is a
relatively tedious and time consuming task, which can only be accomplished by utilizing
highly specialized software packages such as DynaFit [2, 3].

Here we describe a simple algebraic equation that can be used, instead of a full ODE
system, to analyze covalent inhibition kinetics. This integrated rate equation is applicable
under two simultaneously satisfied simplifying assumptions. First, as was the case in the
previous report [1], we require that the substrate concentration must be very much lower
than the corresponding Michaelis constant. Second, the enzyme concentration must
be very much lower than the inhibition constant that characterizes the initially formed
noncovalent enzyme-inhibitor complex. The second requirement is equivalent to saying
that there is no “tight binding” [4, 5, 6, 7, 8, 9, 10].

Results obtained by using the newly presented method were compared with those
obtained by using the conventionally applied kinetic model of covalent enzyme inhibition
(see for example ref. [11, Chap. 9]). We show that ignoring what many casual observers
would consider a “minor” nonlinearity in the no-inhibitor control can cause up to almost
one order of magnitude distortion in the best-fit values of Ki and kinact/Ki. Interestingly,
the best-fit value of kinact obtained by the conventional mathematical model under low
substrate concentrations (relative to the KM) shows only a minor distortion.
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2. MATERIAL AND METHODS

2.1. Experimental
The expression and purification of EGFR L858R/T790M double mutant, as well as

the determination of active enzyme concentration, is described elsewhere [1]. Fluoromet-
ric assays were performed by using the Omnia R© continuous fluorometric kinase assay
system (Invitrogen, Carlsbad, California) using peptide Y-12, a fluorogenic tyrosine phos-
phoacceptor peptide modified with a chelation-enhanced fluorophore (cSx) coupled to a
cysteine residue, Ac-EEEEYI(cSx)IV-NH2. Phosphopeptide formation was monitored
in 50 µL reactions in 96-well plates with a Tecan Safire II microplate reader in fluores-
cence mode using 360 nm excitation and 485 nm emission wavelengths. Reactions were
comprised of 12 mm free MgCl2, 1 mm DTT, 13 µm peptide-cSx, 800 µm ATP, 150 mm
NaCl, and 0.01% Tween-20 in 50 mm HEPES pH 7.5. The reaction mixture contained
various concentrations of the inhibitor identified as Compound 5 in ref. [1]. Reactions
were initiated by the addition of 20 nm EGFR L858R/T790M (final concentration).

2.2. Mathematical
Covalent inhibition under first-order substrate conditions in the absence

of “tight binding”. Let us assume that (a) the substrate concentration, [S]0, is very
much lower than the corresponding Michaelis constant, KM, and (b) the enzyme concen-
tration, [E]0, is very much lower than the inhibition constant, Ki, which characterizes
the initially formed enzyme-inhibitor complex. It could be shown (see Appendix C) that
under those particular limiting conditions the experimental signal such as fluorescence,
F , changes over time, t, according to Eqn (1). In Eqn (1), F0 is the baseline offset
of the experimental signal, i.e., a property of the instrument; rP is the molar response
coefficient of the reaction product, i.e., the number of instrument units generated by one
concentration unit of the reaction product being produced in the enzyme reaction. The
symbols α, β represent auxiliary variables defined in Eqns (2), (3), respectively, where Ki

is the apparent [4] inhibition constant depending on the presumed inhibition mechanism
(e.g. competitive); kinact is the first-order inactivation rate constant for the irreversible
conversion of the initially formed noncovalent complex to the final covalent conjugate.

F = F0 + rP [S]0 {1− exp [−β (1− exp (−α t))]} (1)

α = kinact
[I]0

[I]0 + Ki
(2)

β =
[E]0 ksub

[I]0
Ki

kinact
(3)

Equation (1) was utilized either in the local fit mode, where each individual kinetic
trace was analyzed separately, or in the global fit mode [12], where all kinetic traces
obtained at different concentration of the inhibitor were combined and analyzed a single
super-set of experimental data. In the local mode scenario, the optimized model param-
eters were α, β, and F0, while the molar response factor rP (determined independently)
was held fixed at 5010 RFU/µm of phosphorylated product. In the global fit mode, the
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globally optimized parameters were kinact, Ki, ksub, while the locally optimized parame-
ters (specific for each individual data set) were the baseline offset F0, and the six highest
inhibitor concentrations, [I]0.

Covalent inhibition under first-order substrate conditions in the presence
or absence of “tight binding”. To validate the performance of the newly derived
integrated rate Eqn (1), we also performed a global fit of all combined kinetic traces at
[I]0 > 0 to the differential-equation model described elsewhere [1]. Briefly, the observed
fluorescence F at reaction time t was modeled by using Eqn (4), where F0 is the baseline
offset; rP is the molar response factor of the phosphorylated reaction product (5010
RFU/µm); and [P ] is the product concentration at time t.

F = F0 + rP [P ] (4)

d[E]/dt = −kaI[E][I] + kdI[E.I] (5)

d[S]/dt = −ksub[E][S] (6)

d[P ]/dt = +ksub[E][S] (7)

d[I]/dt = −kaI[E][I] + kdI[E.I] (8)

d[E.I]/dt = +kaI[E][I]− kdI[E.I]− kinact[E.I] (9)

d[E∼I]/dt = +kinact[E.I] (10)

The product concentration [P ] was computed by numerical integration of the ODE
system (5)-(10) using the LSODE integration algorithm [13]. All concentrations were
scaled to micromolar units. The absolute local truncation error was kept below 10−14

µm; the relative local truncation error was kept below 10−8 (eight significant digits).
Conventional integrated rate equation for covalent inhibition. For compari-

son with the newly proposed method, individual kinetic traces were fit to Eqn (11), see
ref. [11, Chapter 9].

F = F0 + rP
vi

kobs
[1− exp (−kobs t)] (11)

kobs = kinact
[I]0

[I]0 + Ki
(12)

Eqn (11) was utilized only in local fit mode. The optimized parameters were F0,
vi and kobs. As before, the molar response of phosphorylated product, rP, was kept
constant at 5010 RFU/µm.

First-order substrate kinetics. Reaction progress curves in the absence of in-
hibitor were fit to Eqn (13), where F is the observed fluorescence intensity and t is reac-
tion time. The adjustable model parameters were the baseline offset, F0, the maximum
amplitude Fmax, and the first-order rate constant k. The corresponding instantaneous
rate curves were computed by using Eqn (14), which is obtained by differentiating Eqn
(13) with respect to time.
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F = F0 + Fmax [1− exp (−k t)] (13)

v = ≡ dF/dt = Fmax k exp (−k t) (14)

2.3. Computational
All computations, using either algebraic or differential-equation models, were per-

formed by using the software package DynaFit [2, 3]. Representative input code is listed
in the Appendix. The raw experimental data utilized in this report are available for
download from http://www.biokin.com.

3. RESULTS

Nonlinearity of the no-inhibitor control curve. A typical time course of an
EGFR L858R/T790M assay in the absence of inhibitors is shown in Fig 1. The first ten
minutes of the assay (Fig 1, Inset) appear distinctly linear upon visual inspection.

The solid curve in the upper panel of Fig 1 represents the least-squares fit of the
experimental data to the exponential model defined by Eqn (13). The best-fit nonlinear
model parameters were F0 = (26112 ± 48) RFU, Fmax = (45970 ± 640) RFU, and k =
(0.000557±0.000011) s−1. The corresponding residual plot, represented as grayed squares
in the bottom panel of Fig 1. A runs-of-signs residual analysis was performed according
to established methods [14, 15]. With 100 data points and 52 positive residuals, the
predicted number of entirely random sign changes is 50 ± 5. The observed number of sign
changes was 38, which corresponds to the p value of 0.004. Thus there is a certain degree
of non-randomness exhibited graphically as an “inverted rainbow” pattern spanning the
first approximately 500 seconds. This corresponds to a moderate lag phase seen in many
Omnia R© kinase assays.

The dashed straight line in the upper panel of Fig 1 represents the results linear least-
squares fit. The best-fit model parameters were slope (reaction rate) 17.67 RFU/sec and
intercept 27790 RFU. The coefficient of determination (”R-squared”) was R2 = 0.989.
The corresponding residual plot is shown as filled circles in the lower panel of Fig 1.
The residuals changed sign only 7 times, as opposed to 38 times in the exponential fit.
With 100 data points and 52 positive residuals, merely 7 runs of signs correspond to a p
value indistinguishable from zero (there is essentially zero likelihood that 100 coin tosses
would produce only 7 runs of heads or tails). The residual plot has a distinctly rainbow
or horseshoe shape characteristic of a significant lack of fit.

The smooth curve in Fig 2 shows the instantaneous exponential rate curve, i.e., the
first-derivative of the exponential best-fit model in Fig 1 with respect to time. The
instantaneous reaction rate decreases over the course of the 24-minute assay by more
than 50%, from approximately 26 RFU/sec to approximately 11 RFU/sec. This level of
decrease in the instantaneous rate indicates significant nonlinearity.

The linearity vs. nonlinearity of the control progress curve was also examined by the
cross-validation method [16]. Accordingly, the control progress curve, comprised of 100
data points spanning 1386 sec, was divided into (in this case) four equal-length sections
comprising 25 data points each. The four quartiles of the overall kinetic trace were fit
to the straight line regression model. The corresponding quartile slopes (i.e., quartile
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Figure 1: Time course of a typical EFGR L858R/T790M assay ([E]0 = 20 nm, peptide
[S]0 = 13 µm, [ATP ]0 = 800 µm) in the absence of inhibitors. Upper panel: The grayed
squares are the experimental data points; the solid curve represents the best least-squares
fit to Eqn (13). The dashed line represents the results of linear least-squares regression.
For details see text. Upper panel - Inset: Experimental data points spanning the first
ten minutes of the assay. The dashed straight line was drawn by hand to emphasize
apparent linearity. Lower panel - Residual Plot: The grayed squares represent residuals
from the exponential fit of the experimental data to Eqn (13). The filled circles represent
residuals from the linear fit.

reaction rates) are displayed as dashed line segments in Fig 2. Thus in the first quartile
(t = 0 – 336 s) the reaction rate was 22.0 RFU/s; in the second quartile (t = 350 – 686
s) the reaction rate was 19.8 RFU/s; in the third quartile (t = 700 – 1036 s) the reaction
rate was 15.6 RFU/s; and in the fourth quartile (t = 1050 – 1386 s) the reaction rate
was 12.8 RFU/s. Thus the sectional reaction rate decreased by more than 40% from the
first to the last quartile.

“Local” fit to the conventional algebraic model. The reaction progress curves
from EGFR L858R/T790M assays conducted in the presence of varied amount of the
inhibitor (Compound 5 from ref. [1]) were fit to Eqn (11). Each individual progress curve
was analyzed separately (“local” as opposed to global [12] fit). The results for one of three
independent replicates are summarized graphically in Fig 3. The overlay of experimental
data (symbols) and the best-fit model (smooth curves) appears satisfactory on visual
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Figure 2: Changes of the observed reaction rate over time corresponding to the ex-
perimental data displayed in Fig 1. The smooth curve represents the first-derivatives,
with respect to reaction time t, of the nonlinear reaction progress curve shown in Fig 1.
The instantaneous rates were computed from Eqn (14) by using the best-fit parameter
values, Fmax = 45970 RFU, and k = 0.000557 s−1. The dashed line segments represent
the slopes of straight lines fit to the four quartiles of the overall reaction progress curve.
Thus the first dashed line segment represents the slope of a straight line fit to the first
quartile (t = 0 through t = 336 s); the second straight line segment represents the the
slope of a straight line fit to the second quartile (t = 350 s through t = 686 s); and so
on.

inspection. The bottom panel shows the corresponding residual plots. The residuals
exhibit only a relatively mild non-randomness, manifested as an inverted rainbow pattern
spanning the first approximately 500 seconds of the assay. This is a consequence of a
slight lag phase exhibited by many Omnia R© kinase assays.

The best-fit values of optimized model parameters appearing in Eqn (11), vi and kobs,
were averaged from three independently replicated determinations. The averaged (n =
3) values of kobs, as well as the corresponding standard deviations from replicates, are
summarized in Table 1.

Analysis of kobs values derived from the conventional algebraic model. In
an attempt to determine kinact, Ki and kinact/Ki values using the conventional algebraic
method [11], the kobs values listed in Table 1 were fit to Eqn (12). The best-fit values
of adjustable model parameters, and the associated formal standard errors from non-
linear regression, were kinact = (0.91 ± 0.10) ms−1 and Ki = (0.11 ± 0.05) µm. Thus
the corresponding best-fit value of the second-order rate constant kinact/Ki is (8.2 ±
3.4) mm−1s−1. In this case the formal standard error was computed by using error
propagation theory [17]. See also Table 2, “Method A”.

The coefficient of variation for kinact/Ki is approximately 40%, even though the pre-
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Figure 3: Representative time course of EGFR L858R/T790M ([E]0 = 20 nm) inhibition
by Compound 5 from ref. [1]. Symbols represent changes in experimentally observed
fluorescence values at various inhibitor concentrations, as shown in the inset. Smooth
curves represent the theoretical model generated by the least-squares fit to equation (11).
Each individual curve was analyzed separately.

cision of the kobs values used for the analysis is typically better than 10%. This is one
particular indication of a lack of fit. The results are summarized graphically in Fig 4.
The data points, representing experimentally determined kobs values, clearly depart from
the least-squares hyperbolic model curve, generated from Eqn (12). This is another indi-
cation of the fact that the hyperbolic model curve postulated by the conventional theory
is not suitable in this case.

“Local” fit to the newly derived algebraic model. The reaction progress curves
from EGFR L858R/T790M assays conducted in the presence of varied amount of the
inhibitor (Compound 5 from ref. [1]) were fit to Eqn (1). Each individual progress
curve was analyzed separately (“local” as opposed to global [12] fit). The overlay of
the best-fit model curves superimposed on the experimental data points was virtually
indistinguishable from the results obtained with Eqn (11), which are illustrated in Fig
3. The best-fit values of optimized model parameters appearing in Eqn (1), α and β,
were averaged from three independently replicated determinations. The averaged (n =
3) values of the α parameter, as well as the corresponding standard deviations from
replicates, are summarized in Table 1. A representative DynaFit script file is listed in
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[I]0, nm kobs, ms−1 α, ms−1

23.44 0.411 ± 0.050 0.048 ± 0.048
46.88 0.436 ± 0.044 0.088 ± 0.053
93.75 0.415 ± 0.036 0.112 ± 0.018

140.63 0.450 ± 0.044 0.168 ± 0.037
187.50 0.475 ± 0.049 0.213 ± 0.048
281.25 0.525 ± 0.088 0.327 ± 0.090
375.0 0.600 ± 0.058 0.430 ± 0.051
562.5 0.701 ± 0.035 0.578 ± 0.029
750.0 0.848 ± 0.088 0.746 ± 0.072
1125 0.927 ± 0.141 0.865 ± 0.139
1500 0.952 ± 0.145 0.907 ± 0.146

Table 1: Results of least-squares fit of individual progress curves to the conventional
algebraic Eqn (12), column kobs, or to the newly derived Eqn (1), column α. The
best-fit values are averages from three separate determinations (i.e. three separate plate-
reader plates). The plus-or-minus values are the corresponding standard deviations from
independent replicates (n = 3).

Appendix A.
Analysis of α values derived from the newly derived algebraic model. In

order to determine kinact, Ki and kinact/Ki values using the newly proposed algebraic
method, the values listed in Table 1 were fitted to Eqn (2). The best-fit values of
adjustable model parameters, and the associated formal standard errors from nonlinear
regression, were kinact = (1.60 ± 0.13) ms−1 and Ki = (1.02 ± 0.15) µm. Thus the
corresponding best-fit value of the second-order rate constant kinact/Ki is (1.6 ± 0.2)
mm−1s−1. As before, the formal standard error of kinact/Ki was computed by using
error propagation theory [17]. The results are summarized graphically in Fig 5. See also
Table 2, “Method B”.

Global fit to the modified algebraic model. Eqn (1) was utilized to fit the
progress curves displayed in Fig 3 in global regression mode [12]. In this approach all 11
progress curves were combined into a single super-set of experimental data. The globally
optimized parameters were kkinact, Ki, and ksub. The locally optimized parameters,
specific to each individual kinetic trace, were the baseline offset F0 and the six highest
inhibitor concentrations, [I]0. A representative DynaFit script file is listed in Appendix
B.

Partial optimization of the inhibitor concentrations was necessary because in pre-
liminary analyses, when all inhibitor concentrations were treated as fixed constants, we
observed serious deviations from randomness in the distribution of residuals. The reason
is that the actual inhibitor concentrations are never exactly identical to the nominal in-
hibitor concentrations, due to unavoidable random errors in volume-delivery (”titration
errors”).

The three available replicates, each comprising 11 progress curves, were analyzed sep-
arately. The best-fit values of globally optimized parameters for the three independent
replicates were kinact = (0.00109, 0.00139, 0.00096) s−1 and Ki = (0.67, 0.86, 0.54) µm,
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Figure 4: Least-squares fit of kobs values obtained by using Eqn (11) to fit the reaction
progress curves displayed in Fig 3. For further details see text.

respectively. Thus the three independently calculated values of the second-order inacti-
vation rate constant were kinact/Ki = (0.0016, 0.0016, 0.0018) µm−1s−1. The averages
and standard deviations from replicates (n = 3) are listed in the method-comparison
Table 2 under “Method C”.

Global fit to the general differential-equation model. The global super-set
of combined reaction progress curves was fit to the differential equation model repre-
sented by Eqns (5)-(10), following the method used in a previous report [1]. The globally
optimized parameters were the microscopic rate constants ksub, kdI, and kinact. The
locally optimized parameters, specific to each individual kinetic trace, were the base-
line offset F0 and the six highest inhibitor concentrations, [I]0. The enzyme-inhibitor
association rate constant kaI was held fixed at 10 µm−1s−1. The best-fit value of the
inhibition constant constant Ki was calculated as the ratio kdI/kaI. The three available
replicates, each comprising 11 progress curves, were analyzed separately. The best-fit
values of globally optimized parameters for the three independent replicates were kinact

= (0.00107, 0.00135, 0.00093) s−1 and Ki = (0.64, 0.82, 0.51) µm, respectively. Thus the
three independently calculated values of the second-order inactivation rate constant were
kinact/Ki = (0.00166, 0.00165, 0.00171) µm−1s−1. The averages and standard deviations
from replicates (n = 3) are listed in the method-comparison Table 2 under “Method D”.

4. DISCUSSION

Nonlinearity of the no-inhibitor control curve. The conventional fitting model
for covalent enzyme inhibition, Eqn (11) (see ref. [11], Chapter 9), relies on the theo-
retical assumption that the control progress curve is linear over time. However, perfect
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Figure 5: Least-squares fit of α values obtained by using Eqn (1) to fit the reaction
progress curves displayed in Fig 3. For further details see text.

linearity is an unattainable ideal due to a variety of experimental factors such as en-
zyme deactivation or product inhibition. Such nuisance factors are more likely to be
expressed in covalent inhibition assays, as compared to initial rate methods, because
the assay times are necessarily prolonged to achieve substantial irreversible inactivation.
Therefore the two relevant questions are, first, what particular degree of nonlinearity in
the control curve is acceptable and, second, how best to measure it. In any given case
the answers will determine whether it is justified to use the conventional fitting model
for covalent inhibition, Eqn (11), or whether it is necessary to employ either the newly
derived algebraic Eqn (1) or even the full ODE model represented by Eqns (5)-(10).

Discussions with practitioners in both academia and industry regarding the results
presented in this paper revealed a widely divergent spectrum of opinions on the linearity

Method kinact, ms−1 Ki, µm kinact/Ki, mm−1 s−1

A 0.91 ± 0.11 0.11 ± 0.05 8.2 ± 3.9
B 1.60 ± 0.13 1.02 ± 0.15 1.57 ± 0.26
C 1.07 ± 0.22 0.66 ± 0.16 1.62 ± 0.08
D 1.09 ± 0.21 0.65 ± 0.15 1.69 ± 0.09

Table 2: Final results - comparison of methods. The plus-or-minus values for methods
”A” and ”B” (local fit) are formal standard errors from nonlinear regression of averaged
kobs or values, respectively. The plus-or-minus values for methods ”C” and ”D” (global
fit) are standard deviations from independent replicates (n = 3). For further details see
text.
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vs. nonlinearity of raw data such as those displayed in Fig 1. Some investigators fo-
cused on the inset plot and concluded that the entire 24-minute curve is probably “linear
enough” to justify the use of the conventional fitting model, because the first ten minutes
of the assay appear “perfectly linear” by visual inspection. Other researchers focused on
the residual plots but were skeptical of the instantaneous rate plots in Fig 2. The claim
of “sufficient linearity” of the control curve in Fig 1 is seemingly bolstered by the fact
that R-squared value from linear regression is relatively high (R2 = 0.99). Indeed some
investigators mistakenly believe that the R2 value measures the “goodness of fit between
theoretical curves and experimental data” [18]. In fact, R2 measures how strongly the
dependent variable, in this case fluorescence intensity, varies with the independent vari-
able, in this case reaction time. However the qualitative nature of this dependence – e.g.
“goodness of fit” to a linear, exponential, hyperbolic, or another fitting model – is not
reflected in R2 at all. That is why it is possible to observe R2 = 0.99 (presumably a
“good fit”) and a decidedly nonrandom distribution of residuals (a “poor fit”, as seen in
the bottom panel of Fig 1).

To complicate the matters further, our own experience shows that the randomness in
the distribution of residuals, when considered in isolation, is not a suitable measure of
significant nonlinearity in enzyme kinetics. If fact, we found that in certain exquisitely
well-tuned enzyme assays [19] the random scatter in the data points is so low that
even insignificant departures from linearity (e.g. those observed at extremely low final
substrate conversions) will produce decidedly nonrandom residual patterns.

Based on similar practical reasons, we hereby propose an operational definition of
nonlinearity in the context of covalent enzyme inhibition kinetics, which is inspired by
the “cross-validation” concept from statistics [16]. The basic idea is to divide the control
progress curve into two halves; fit each segment to the straight line model; and finally
compare the two resulting slopes, i.e., the “initial” and “final” reaction rates. If the
reaction rates in the first half and in the second half differ by more than 20%, the entire
progress curve should be declared operationally nonlinear. Other cut-off values (25% or
33%) are possible and will depend on the particular project. Fig 2 illustrates a small
variation on this theme, where we used four instead of two equal-length segments.

Comparison of methods. In this work we compared four data-analytic methods
for the determination of kinact, Ki, and kinact/Ki. Method “A” represents the conven-
tional approach based on the algebraic equation (11) [11]. This method is based on two
underlying assumptions. The first assumption, unambiguously satisfied in the case of
Compound 5 [1], is that there is no “tight binding” [4] in the sense that the inhibition
constant of the initial noncovalent complex is very much larger than the active enzyme
concentration. The second assumption underlying method “A” is that the no-inhibitor
control progress curve is linear over time, corresponding to constant reaction rate over
the entire course of the assay. However, perfect linearity is not achievable, which is why
the main goal of this report was to determine whether or not the particular degree of
nonlinearity displayed in Fig 1 might have a significant effect on kinact, Ki, and kinact/Ki.

Three alternate methods of analysis, namely methods “B” through “D” listed in Ta-
ble 2, were chosen for unbiased comparison with the conventional method “A”. Methods
“B” and “C”, identically to method “A”, also assume that that the there is no tight bind-
ing but, in opposition to method “A”, assume that the substrate concentration is very
much lower than the corresponding Michaelis constant and therefore that the no-inhibitor
control is exponential rather than linear. In our case the peptide substrate concentra-
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tion was [S]0 = 13 µm while KM,Pep > 200 µm [1], therefore exponential time course of
the no-inhibitor control is to be expected from theory. Finally, method “D” makes no
assumptions about the strength of initial binding, in the sense that it treats indiscrimi-
nately both inhibitors that are “tight binding” in the initial complex and inhibitors that
are only weakly bound.

A comparison of methods “C” (global algebraic) and “D” (global differential) shows
that the results for all three kinetic constants (kinact, Ki, and kinact/Ki) are virtually
identical. This provides an important validation of the newly derived algebraic Eqn (1)
because – to repeat for emphasis – method “D” makes no assumption about the presence
or absence of tight binding and in that sense it is the most unbiased of the four methods
being compared.

A comparison of methods “B” (local algebraic) and “C” (global algebraic), both
of which are based on Eqn (1), shows that the these two methods provide virtually
identical results for kinact/Ki, whereas the local fit method “B” appears to overestimate
both (kinact and Ki by approximately 40%. It should be noted that global analysis
of biochemical and biophysical data was repeatedly shown to be superior to the step-
wise, local fit method [12], which is why we place greater confidence in method “C” as
compared with method “B”.

Comparison of methods “A” and “B”, which are otherwise identical except for the use
of the algebraic Eqns (11) or (1), respectively, shows that the conventional method “A”
performed reasonably well in terms of the first-order inactivation rate constant kinact.
The average from three independent replicates was kinact = 0.0009 s−1, whereas methods
“B” through “D” yielded kinact = 0.0016, 0.0012, and 0.0011 s−1, respectively. Thus the
inactivation rate constant is underestimated by method “A” by at most 50%. However,
the best-fit value of Ki was severely distorted by ignoring the presumably “slight” non-
linearity present in the no-inhibitor control. In particular, the conventional method “A”
produced Ki = 0.1 µm whereas methods “B” using the more appropriate algebraic model
resulted in Ki = 1.0 µm. This represents an order-of-magnitude distortion. The unbiased
global fit method “D” resulted in Ki = 0.7 µm, a sevenfold difference as compared to
the conventional method “A”. Similar distortion or bias in the results from method “A”
was seen for the second-order deactivation rate constant kinact/Ki.

In conclusion, the “almost perfect” linearity of the no-inhibitor control curve displayed
in Fig 1 can rightly be characterized as an optical illusion. To the untrained eye it would
appear that the reaction rate is constant at least over the first ten minutes of the assay.
However, the actual nonlinearity is clearly revealed in Fig 2, which shows that the slope
(i.e., reaction rate) changes significantly between the first five minutes and the second
five minutes of the assay. More importantly this rather subtle nonlinearity (almost
undetectable by naked eye) has a decidedly non-subtle effect on the final value of Ki

amounting to an order-of-magnitude distortion, as shown in Table 2.
The role of ATP as co-substrate. The newly derived algebraic Eqn (1) does not

explicitly take into account that protein kinase assays include ATP as a co-substrate.
However, ATP presence is implied in the semantics of the dissociation constant Ki. In
particular, Ki in Eqns (2) and (3) should be viewed as an “apparent Ki”, as defined by
Cha [4] and others. For example, if the given kinase inhibitor is kinetically competitive
with respect to ATP, then the “true Ki” of the inhibitor can be computed from the “ap-
parent Ki” determined from Eqn (1) as Ki/(1 + [ATP ]/KM,ATP). This is the treatment
we utilized for Compound 5 (an ATP-competitive inhibitor) in a previously published

13



report [1]. However, in this paper we report only the “apparent” Ki values.
Limitations of the newly presented algebraic model. The algebraic fitting

model represented by the newly derived integrated rate Eqn (1) is applicable only if two
simplifying assumptions are satisfied at the same time. First, the peptide substrate con-
centration must be very much lower than the corresponding Michaelis constant. Second,
the inhibition constant that describes the initially formed noncovalent enzyme-inhibitor
complex must be very much larger than the active enzyme concentration.

The low substrate requirement ([S]0 << KM) does not seem overly restrictive, be-
cause in many practically important cases the substrate concentration in fact necessarily
remains very low relative to the corresponding KM, due to low solubility, inner filtration
effects [20], or other experimental constraints.

The low potency and/or low enzyme concentration requirement ([E]0 < Ki) does
not appear overly onerous either. Especially in the relatively early stages of preclinical
discovery, the biochemical analyst is likely to be faced with many low-affinity enzyme
inhibitors. In favorable cases, the experimental setup can be adjusted such that the active
enzyme concentration can be lowered to single-digit picomolar concentrations without a
catastrophic loss of overall sensitivity. Under those circumstances the algebraic rate
equations presented here could be used to characterize even highly potent (Ki > 10 pm)
covalent enzyme inhibitors.

Lastly, it should be noted that an effective application of the newly derived kinetic
model represented by Eqn (1) requires prior independent determination of the molar
response factor of the reaction product, rP, which must subsequently be kept constant in
the regression analysis. As a reminder, the response factor is defined simply as the number
of arbitrary instrument units (for example, absorbance units or relative fluorescence
units) corresponding to the given concentration unit (for example, one micromole per
liter) of the final reaction product being formed in the enzyme reaction. Fortunately this
particular quantity can be easily determined in a variety of ways.

In conclusion, differential-equation modeling of experimental kinetic data does remain
the most universally applicable mathematical formalism, because it makes no simplifying
assumptions. Nevertheless, regardless of its relatively narrow utility, the algebraic model
for covalent inhibition kinetics presented in this report should add a useful tool into the
biochemical analyst’s toolbox.
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APPENDIX

This Appendix lists DynaFit scripts implementing the algebraic fit to Eqn (1). The
coding below can be easily adapted for any software package that allows the user to
specify an arbitrary algebraic fitting model, such as SigmaPlot, ORIGIN, GraphPad
Prism, and others. The raw data file sheet.txt, referred to in the DynaFit scripts listed
below, is available for download from http://www.biokin.com/.

A. “Local” fit of reaction progress curves to Eqn (1)

The following DynaFit script represents “local” fit of Compound 5 inhibition data to
the algebraic model represented by Eqn (1). In this case only the first of three replicates
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(“R1” in the coding below) was analyzed. However the kinetic analysis was performed
identically for all three independent replicates. The symbols “a” and “b” below stand
for the model parameters α and β, respectively.

[task]

task = fit

data = generic

[parameters]

t, Fo, a, b

[model]

So = 13

rP = 4500

a = 0.001 ?

b = 0.1 ?

P = So*(1 - exp(-b*(1-exp(-a*t) ) ) )

Fo = -100 ? (-2000 .. +2000)

F = Fo + rP * P

[data]

variable t

directory ./Cpd-5/R1/data

sheet sheet.txt

column 2

[output]

directory ./Cpd-5/R1/output/algloc-001

[settings]

{Filter}

ZeroBaselineSignal = y

[task] | data = generic | task = fit | [data] | variable t | column 3

[task] | data = generic | task = fit | [data] | variable t | column 4

[task] | data = generic | task = fit | [data] | variable t | column 5

[task] | data = generic | task = fit | [data] | variable t | column 6

[task] | data = generic | task = fit | [data] | variable t | column 7

[task] | data = generic | task = fit | [data] | variable t | column 8

[task] | data = generic | task = fit | [data] | variable t | column 9

[task] | data = generic | task = fit | [data] | variable t | column 10

[task] | data = generic | task = fit | [data] | variable t | column 11

[task] | data = generic | task = fit | [data] | variable t | column 12

[end]

B. Global fit of reaction progress curves to Eqn (1)

The following DynaFit script represents global ft of Compound 5 inhibition data to
the algebraic model represented by Eqn (1). This script applies to the first of three
replicates (”R1” in the coding below).

[task]

task = fit

data = generic

[parameters]

t, Eo, So, Io, ksub, Ki, kinact, Fo, rP
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[model]

Eo = 0.02

So = 13

Ki = 1 ?

kinact = 0.01 ?

ksub = 0.001 ?

rP = 4500

a = kinact * Io/(Io + Ki)

b = (Eo*ksub/kinact) * (Ki/Io)

P = So*(1 - exp(-b*(1-exp(-a*t) ) ) )

F = Fo + rP * P

[data]

variable t

directory ./Cpd-5/R1/data

sheet sheet.txt

column 2 | param Fo = -500 ? (-2000 .. +2000), Io = 1.5 ?

column 3 | param Fo = -500 ? (-2000 .. +2000), Io = 1.125 ?

column 4 | param Fo = -500 ? (-2000 .. +2000), Io = 0.75 ?

column 5 | param Fo = -500 ? (-2000 .. +2000), Io = 0.5625 ?

column 6 | param Fo = -500 ? (-2000 .. +2000), Io = 0.375 ?

column 7 | param Fo = -500 ? (-2000 .. +2000), Io = 0.28125 ?

column 8 | param Fo = -500 ? (-2000 .. +2000), Io = 0.1875

column 9 | param Fo = -500 ? (-2000 .. +2000), Io = 0.140625

column 10 | param Fo = -500 ? (-2000 .. +2000), Io = 0.09375

column 11 | param Fo = -500 ? (-2000 .. +2000), Io = 0.046875

column 12 | param Fo = -500 ? (-2000 .. +2000), Io = 0.0234375

[output]

directory ./Cpd-5/R1/output/algeb-001

[settings]

{Filter}

ZeroBaselineSignal = y

[end]

C. Derivation of Eqn (1)

Let us assume that a covalent inhibition assay is conducted under the special ex-
perimental conditions where the substrate concentration [S]0 is very much lower than
Michaelis constant KM. It has been shown that under those conditions the kinetic mech-
anism can be represented by the “hit-and-run” model shown in Scheme 1. Please note
that the Michaelis complex E.S is not represented in Scheme 1, because its mole fraction
is assumed to be negligibly small.

E + I E•I

kon

koff

kinact
E~J

E + S
ksub

E + P

Ki = koff / kon
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Scheme 1

According to Scheme 1, the formation of the covalent conjugate E∼I over time is
governed by the differential equation (C.1), where [E.I] is the concentration of the non-
covalent complex at the reaction time t.

d[E∼I]
dt

= kinact[E.I] (C.1)

Invoking the rapid-equilibrium approximation we can define the equilibrium dissocia-
tion constant of the initial noncovalent complex as K i = [I][E]/[E.I]. However, assuming
that Ki is very much larger than the active enzyme concentration (no “tight binding”
and no inhibitor depletion) allows us to substitute the total or analytic inhibitor con-
centration, [I]0, for the free equilibrium concentration, [I]. Thus [E.I] = [I]0 [E]/Ki and
therefore Eqn (C.1) can also be written as shown in Eqn (C.2).

d[E∼I]
dt

= kinact[E]
[I]0
Ki

(C.2)

The mass balance for enzyme forms can be written as shown in Eqn (C.3). Note that
the Michaelis complex concentration [E.S] is neglected in the mass balance equation,
due to the special conditions whereby [S]0 << KM. The concentration of the covalent
conjugate can thus be expressed as shown in Eqn (C.4).

[E]0 = [E] + [E.I] + [E∼I] = [E]
(

1 +
[I]0
Ki

)
+ [E∼I] (C.3)

[E∼I] = [E]0 − [E]
(

1 +
[I]0
Ki

)
(C.4)

Differentiating both sides of Eqn ((C.4)) with respect to the reaction time, t, we
obtain Eqn (C.5).

d[E∼I]
dt

= −d[E]
dt

(
1 +

[I]0
Ki

)
(C.5)

The right-hand sides of Eqns (C.1) and (C.5) must be equal, which leads, after a
trivial rearrangement, to the differential equation (C.6) for the rate of change in the free
enzyme concentration [E] as it evolves over time.

d[E]
dt

= −kinact[E]
[I]0

[I]0 + Ki
(C.6)

Equation (C.6) can be integrated in a closed form after the separation of variables as
shown in Eqn (C.7), where [E](0) is the free enzyme concentration at time zero.

∫ [E]

[E](0)

d[E]
[E]

= −kinact
[I]0

[I]0 + Ki

∫ t

0

dt (C.7)
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The definite integral on the right-hand side of Eqn (C.7) can evaluated simply as∫ t

0
dt = t. Let us introduce an auxiliary constant α defined as shown in Eqn (C.8). Then

the integral equation (C.7) can be rewritten as shown in Eqn (C.9).

α ≡ kinact
[I]0

[I]0 + Ki
(C.8)

∫ [E]

[E](0)

d[E]
[E]

= −α t (C.9)

Importantly, based on the rapid equilibrium approximation, the lower integration
bound for the free enzyme concentration, [E](0) in Eqn (C.9), which is the free enzyme
concentration at time zero (as opposed to total or analytic concentration [E]0), can be
expressed as shown in Eqn (C.10).

[E](0) = [E]0
Ki

[I]0 + Ki
(C.10)

Thus the definite integral in Eqn (C.9) can be evaluated as shown in Eqn (C.11) and
the free enzyme concentration, [E], evolves over time according to Eqn (C.12).

ln[E]− ln
(

[E]0
Ki

[I]0 + Ki

)
= −α t (C.11)

[E] = [E]0
Ki

[I]0 + Ki
exp (−α t) (C.12)

According to the “hit-and-run” mechanism postulated in Scheme 1 (see also ref. [1])
the rate of change in the substrate concentration is expressed by the differential Eqn
(C.13).

d[S]
dt

= −ksub[E][S] (C.13)

After the separation of variables and after substitution for [E] from Eqn (C.12), we
obtain the integral equation (C.14).

∫ [S]

[S]0

d[S]
[S]

= −ksub[E]0
Ki

[I]0 + Ki

∫ t

0

exp (−α t) (C.14)

Analytic integration of both sides of Eqn (C.14), within the indicated bounds, leads
directly to Eqn (C.15) expressing changes in the substrate concentration, [S], over the
reaction time, t.

[S] = [S]0 exp
{
− ksub[E]0

[I]0 + Ki

Ki

α
[1− exp (−α t)]

}
(C.15)
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For convenience we can introduce the auxiliary variable β defined as shown in Eqn
(C.16). The reaction product concentration can be computed as [P ] = [S]0 − [S], which
leads to Eqn (C.17). Finally, introducing the baseline experimental signal F0 and the
assuming that the observed signal intensity is proportional to the product concentration
[P ] via the molar response coefficient, rP, we obtain Eqn (C.18) which is equivalent to
Eqn (1) above.

β ≡ ksub[E]0
[I]0 + Ki

Ki

α
=

ksub[E]0
kinact

Ki

[I]0
(C.16)

[P ] = [S]0 exp {1− β [1− exp (−α t)]} (C.17)

F = F0 + rP [P ] (C.18)
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